Overview of Analog Baseband Filters in Radio Receivers

In this work, the analog baseband low-pass filter is defined as the receiver block between the RF front-end and the analog-to-digital converter (ADC). In a superheterodyne receiver, however, it is placed between the IF stage and the ADC, to be exact. The analog baseband filter is responsible for performing channel-select filtering, either partially with the digital back-end or completely in the analog domain. In addition, the preceding receiver stages may also include passive filters, potentially alleviating the selectivity, and, especially, the stopband linearity requirements of the analog baseband filter. The partitioning of the filtering in a radio receiver depends on the receiver architecture selected, the gain and the linearity of the receiver building blocks employed, and the wireless application that is targeted, including the interferer scenario. The analog baseband filter can be a continuous-time or a discrete-time filter. Continuous-time filters have a speed advantage when compared to their discrete-time counterparts, since no sampling is required [1–3]. Therefore, it is often the case that continuous-time filters are more suitable for wideband applications. Moreover, the following ADC requires anti-aliasing filtering, which can be performed only by continuous-time filters. To accomplish simultaneous channel-select and anti-aliasing filtering and hence to reduce the number of power-consuming and noisy filter stages in a receiver, the employment of continuous-time low-pass filters is a practical choice. This work concentrates on the design and implementation of continuous-time filters and, thus, discrete-time filters are excluded from this book.

[1]  Edgar Sánchez-Sinencio,et al.  Frequency-dependent harmonic-distortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Georgios B. Giannakis,et al.  Ultra-wideband communications: an idea whose time has come , 2004 .

[3]  Asad A. Abidi,et al.  A 160-MHz analog front-end IC for EPR-IV PRML magnetic storage read channels , 1996 .

[4]  Dusit Niyato,et al.  Cognitive radio for next-generation wireless networks: an approach to opportunistic channel selection in ieee 802.11-based wireless mesh , 2009, IEEE Wireless Communications.

[5]  Piet Wambacq,et al.  Distortion analysis of analog integrated circuits , 1998 .

[6]  Khurram Muhammad,et al.  IIP2 and DC Offsets in the Presence of Leakage at LO Frequency , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[7]  Adam Schwartz,et al.  A dual-antenna phased-array UWB transceiver in 0.18-μm CMOS , 2006 .

[8]  K. Folkesson,et al.  A 2.4-GHz RF sampling receiver front-end in 0.18-/spl mu/m CMOS , 2005, IEEE Journal of Solid-State Circuits.

[9]  R. Svitek,et al.  DC offsets in direct-conversion receivers: characterization and implications , 2005 .

[10]  I. Seto,et al.  A 60-GHz CMOS Receiver Front-End With Frequency Synthesizer , 2008, IEEE Journal of Solid-State Circuits.

[11]  Mikko Valkama,et al.  Advanced methods for I/Q imbalance compensation in communication receivers , 2001, IEEE Trans. Signal Process..

[12]  Ali M. Niknejad,et al.  A Highly Integrated 60GHz CMOS Front-End Receiver , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[13]  K. Kivekas Design and characterization of downconversion mixers and the on-chip calibration techniques for monolithic direct conversion radio receivers , 2002 .

[14]  Aarno Pärssinen,et al.  A Low Noise Figure 1.2-V CMOS GPS Receiver Integrated as a Part of a Multimode Receiver , 2006, IEEE Journal of Solid-State Circuits.

[15]  Walter H. W. Tuttlebee Software-defined radio: facets of a developing technology , 1999, IEEE Wirel. Commun..

[16]  Chia-Chin Chong,et al.  An Overview of Multigigabit Wireless through Millimeter Wave Technology: Potentials and Technical Challenges , 2007, EURASIP J. Wirel. Commun. Netw..

[17]  Francesco Svelto,et al.  A 0.18-μm CMOS selective receiver front-end for UWB applications , 2006 .

[18]  T. Hanusch,et al.  Analog Baseband-IC for Dual Mode Direct Conversion Receiver , 1996, ESSCIRC '96: Proceedings of the 22nd European Solid-State Circuits Conference.

[19]  G.R. Aiello,et al.  Design of a multiband OFDM system for realistic UWB channel environments , 2004, IEEE Transactions on Microwave Theory and Techniques.

[20]  F. Xavier Moncunill-Geniz,et al.  A generic approach to the theory of superregenerative reception , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  I. Mehr,et al.  A CMOS continuous-time G/sub m/-C filter for PRML read channel applications at 150 Mb/s and beyond , 1997 .

[22]  Yannis Tsividis,et al.  Integrated continuous-time filter design - an overview , 1994, IEEE J. Solid State Circuits.

[23]  Michiel Steyaert,et al.  Low-IF topologies for high-performance analog front ends of fully integrated receivers , 1998 .

[24]  Troels Emil Kolding,et al.  Noise and intercept point calculation for modern radio receiver planning , 2001 .

[25]  J. Laskar,et al.  60-GHz Integrated Transmitter Development in 90-nm CMOS , 2009, IEEE Transactions on Microwave Theory and Techniques.

[26]  Norman J. Beamish,et al.  ON THE DIRECT CONVERSION RECEIVER -- A TUTORIAL , 2001 .

[27]  J. Ryynanen,et al.  Multitone Fast Frequency-Hopping Synthesizer for UWB Radio , 2007, IEEE Transactions on Microwave Theory and Techniques.

[28]  Joy Laskar,et al.  A 90nm CMOS 60GHz Radio , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[29]  Terence W. Barrett,et al.  HISTORY OF ULTRA WIDEBAND COMMUNICATIONS AND RADAR: PART II, UWB RADARS AND SENSORS , 2001 .

[30]  S. Lee,et al.  A WiMedia-Compliant UWB Transceiver in 65nm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[31]  Asad A. Abidi,et al.  A single-chip 900-MHz spread-spectrum wireless transceiver in 1-μm CMOS. II. Receiver design , 1998, IEEE J. Solid State Circuits.

[32]  M. Tiebout,et al.  A WiMedia/MBOA-Compliant CMOS RF Transceiver for UWB , 2006, IEEE Journal of Solid-State Circuits.

[33]  L.E. Larson,et al.  A Low-Cost and Low-Power CMOS Receiver Front-End for MB-OFDM Ultra-Wideband Systems , 2007, IEEE Journal of Solid-State Circuits.

[34]  Jacques C. Rudell,et al.  A 1.9-GHz wide-band IF double conversion CMOS receiver for cordless telephone applications , 1997, IEEE J. Solid State Circuits.

[35]  S. Lo,et al.  A Dual-Antenna Phased-Array UWB Transceiver in 0.18-$\mu{\hbox {m}}$ CMOS , 2006, IEEE Journal of Solid-State Circuits.

[36]  B. Razavi,et al.  A UWB CMOS transceiver , 2005, IEEE Journal of Solid-State Circuits.

[37]  R.W. Brodersen,et al.  A 1 Gb/s Mixed-Signal Baseband Analog Front-End for a 60 GHz Wireless Receiver , 2009, IEEE Journal of Solid-State Circuits.

[38]  Hossein Hashemi,et al.  Concurrent multiband low-noise amplifiers-theory, design, and applications , 2002 .

[39]  David A. Johns,et al.  Analog Integrated Circuit Design , 1996 .

[40]  M. Tarsia,et al.  Design considerations and implementation of a programmable high-frequency continuous-time filter and variable-gain amplifier in submicrometer CMOS , 1999, IEEE J. Solid State Circuits.

[41]  Mohammed S. Ghausi,et al.  Design of analog filters : passive, active RC, and switched capacitor , 1990 .

[42]  M. E. Valkenburg,et al.  Design of Analog Filters , 2001 .

[43]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.

[44]  Kimmo Koli,et al.  A 900MHz direct ΔΣ receiver in 65nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[45]  Andrea Bevilacqua,et al.  An Integrated Solution for Suppressing WLAN Signals in UWB Receivers , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[46]  Jussi Ryynanen,et al.  A 2-GHz wide-band direct conversion receiver for WCDMA applications , 1999, IEEE J. Solid State Circuits.

[47]  A. Vasilopoulos,et al.  A Low-Power Wideband Reconfigurable Integrated Active-RC Filter With 73 dB SFDR , 2006, IEEE Journal of Solid-State Circuits.

[48]  K. A. Simons The decibel relationships between amplifier distortion products , 1970 .

[49]  Pui-In Mak,et al.  Transceiver architecture selection: Review, state-of-the-art survey and case study , 2007, IEEE Circuits and Systems Magazine.

[50]  Asad A. Abidi Direct-conversion radio transceivers for digital communications , 1995 .

[51]  Robert G. Meyer,et al.  Blocking and desensitization in RF amplifiers , 1995, IEEE J. Solid State Circuits.

[52]  A. Yoshizawa,et al.  Anti-blocker design techniques for MOSFET-C filters for direct conversion receivers , 2002, IEEE J. Solid State Circuits.

[53]  P.F.M. Smulders,et al.  Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions , 2002, IEEE Commun. Mag..

[54]  Behzad Razavi A 2.4-GHz CMOS receiver for IEEE 802.11 wireless LANs , 1999 .

[55]  Behzad Razavi,et al.  Design considerations for direct-conversion receivers , 1997 .

[56]  Nicola Laurenti,et al.  A Reconfigurable Narrow-Band MB-OFDM UWB Receiver Architecture , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[57]  I.D. O'Donnell,et al.  Spectrum sharing radios , 2006, IEEE Circuits and Systems Magazine.

[58]  Aarno Parssinen Direct Conversion Receivers in Wide-Band Systems , 2001 .

[59]  Mikael Gudmundson WCDMA - The Third Generation Radio Access , 1999, 1999 29th European Microwave Conference.

[60]  Jarkko Jussila,et al.  Analog baseband circuits for WCDMA direct-conversion receivers , 2003 .

[61]  A. Hadden Mobile broadband - where the next generation leads us [Industry Perspectives] , 2009, IEEE Wireless Communications.

[62]  Hyungcheol Shin,et al.  A Simple Figure of Merit of RF MOSFET for Low-Noise Amplifier Design , 2008, IEEE Electron Device Letters.

[63]  Jirayuth Mahattanakul,et al.  The effect of I/Q imbalance and complex filter component mismatch in low-IF receivers , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[64]  H. Darabi,et al.  A Blocker Filtering Technique for SAW-Less Wireless Receivers , 2007, IEEE Journal of Solid-State Circuits.

[65]  Joseph Mitola,et al.  The software radio architecture , 1995, IEEE Commun. Mag..

[66]  B. Razavi A 60GHz direct-conversion CMOS receiver , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[67]  Shanthi Pavan,et al.  Widely Programmable High-Frequency Active RC Filters in CMOS Technology , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[68]  F. Svelto,et al.  A 0.18-$muhbox m$CMOS Selective Receiver Front-End for UWB Applications , 2006, IEEE Journal of Solid-State Circuits.

[69]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[70]  Saska Lindfors,et al.  A 2.7 V CMOS dual-mode baseband filter for GSM and WCDMA , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[71]  Saska Lindfors,et al.  A 240-MHz Low-Pass Filter With Variable Gain in 65-nm CMOS for a UWB Radio Receiver , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[72]  Donald K. Weaver,et al.  A Third Method of Generation and Detection of Single-Sideband Signals , 1956, Proceedings of the IRE.

[73]  I. Mehr,et al.  A CMOS Continuous-Time Filter for PRML Read Channel Applications at 150 Mb/s and Beyond , 1997 .

[74]  A. Tomkins,et al.  A Zero-IF 60 GHz 65 nm CMOS Transceiver With Direct BPSK Modulation Demonstrating up to 6 Gb/s Data Rates Over a 2 m Wireless Link , 2009, IEEE Journal of Solid-State Circuits.

[75]  Ahmed Amer,et al.  A Low-Power Wideband CMOS LNA for WiMAX , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[76]  Hui Zheng,et al.  A 3.1 GHz–8.0 GHz Single-Chip Transceiver for MB-OFDM UWB in 0.18-$\mu$ m CMOS Process , 2009, IEEE Journal of Solid-State Circuits.

[77]  J. Ryynanen,et al.  A 22 mA 3.7 dB NF direct conversion receiver for 3G WCDMA , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[78]  J. Ryynanen,et al.  Integrated circuits for multiband multimode receivers , 2006, IEEE Circuits and Systems Magazine.

[79]  Kari Halonen,et al.  Characterization of IIP2 and DC-offsets in transconductance mixers , 2001 .

[80]  M. Tiebout,et al.  Analysis and Design of an Integrated Notch Filter for the Rejection of Interference in UWB Systems , 2009, IEEE Journal of Solid-State Circuits.

[81]  R. Guerrieri,et al.  Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals , 2006, IEEE Circuits and Systems Magazine.

[82]  A. Tomkins,et al.  Nanoscale CMOS Transceiver Design in the 90–170-GHz Range , 2009, IEEE Transactions on Microwave Theory and Techniques.

[83]  Saska Lindfors,et al.  A 3-V 230-MHz CMOS decimation subsampler , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[84]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[85]  Ali M. Niknejad,et al.  A Robust 24mW 60GHz Receiver in 90nm Standard CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[86]  Jon Strange,et al.  Single-Chip Tri-Band WCDMA/HSDPA Transceiver without External SAW Filters and with Integrated TX Power Control , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[87]  Jussi Ryynänen,et al.  Low-noise amplifiers for integrated multi-mode direct-conversion receivers , 2004 .

[88]  Shahriar Mirabbasi,et al.  Classical and modern receiver architectures , 2000, IEEE Commun. Mag..

[89]  Antti Toskala,et al.  WCDMA for UMTS: Radio Access for Third Generation Mobile Communications , 2000 .

[90]  Mikko Kärkkäinen,et al.  Millimeter-Wave Integrated Circuits in 65-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[91]  J. Kaukovuori CMOS radio frequency circuits for short-range direct-conversion receivers , 2008 .