Engineering Knowledge-Based Variance-Reduction Simulation and G-Dominance for Structural Frame Robust Optimization

This paper proposes the incorporation of engineering knowledge through both (a) advanced state-of-the-art preference handling decision-making tools integrated in multiobjective evolutionary algorithms and (b) engineering knowledge-based variance-reduction simulation as enhancing tools for the robust optimum design of structural frames taking uncertainties into consideration in the design variables. The simultaneous minimization of the constrained weight (adding structural weight and average distribution of constraint violations) on the one hand and the standard deviation of the distribution of constraint violation on the other are handled with multiobjective optimization-based evolutionary computation in two different multiobjective algorithms. The optimum design values of the deterministic structural problem in question are proposed as a reference point (the aspiration level) in reference-point-based evolutionary multiobjective algorithms (here g-dominance is used). Results including S-metric statistics in a structural frame test case with uncertain loads show considerable reductions in computational costs without harming the nondominated front quality, obtaining a design set that makes it possible to select minimum weight and maximum robustness optimum designs.

[1]  Kongtian Zuo,et al.  STRUCTURAL OPTIMAL DESIGN OF HEAT CONDUCTIVE BODY WITH TOPOLOGY OPTIMIZATION METHOD , 2005 .

[2]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[3]  日本規格協会 構造物の信頼性に関する一般原則 = General principles on reliability for structures = Principes généraux de la fiabilité des constructions , 1998 .

[4]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[5]  Khaled Ghédira,et al.  The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.

[6]  David Greiner,et al.  Truss topology optimization for mass and reliability considerations—co-evolutionary multiobjective formulations , 2012 .

[7]  G. Winter,et al.  Optimising frame structures by different strategies of genetic algorithms , 2001 .

[8]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[9]  Lily Rachmawati,et al.  Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[10]  Tae Hee Lee,et al.  Robust Design: An Overview , 2006 .

[11]  David Greiner,et al.  MULTIOBJECTIVE OPTIMIZATION OF BAR STRUCTURES BY PARETO-GA , 2000 .

[12]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[13]  Manolis Papadrakakis,et al.  Structural design optimization considering uncertainties , 2008 .

[14]  Gerhart I. Schuëller,et al.  Computational methods in optimization considering uncertainties – An overview , 2008 .

[15]  Rajan Filomeno Coelho,et al.  Co-Evolutionary Optimization for Multi-Objective Design Under Uncertainty , 2013 .

[16]  Kalyanmoy Deb,et al.  Running performance metrics for evolutionary multi-objective optimizations , 2002 .

[17]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[18]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[19]  Carlos A. Coello Coello,et al.  Human Preferences and their Applications in Evolutionary Multi—Objective Optimization , 2005 .

[20]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[21]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[22]  G. Winter,et al.  Single and multiobjective frame optimization by evolutionary algorithms and the auto-adaptive rebirth operator , 2004 .

[23]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[24]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[25]  David Greiner,et al.  Optimum Structural Design Using Bio-Inspired Search Methods: A Survey and Applications , 2015 .

[26]  Alan D. Christiansen,et al.  Multiobjective optimization of trusses using genetic algorithms , 2000 .

[27]  John E. Mottershead,et al.  A review of robust optimal design and its application in dynamics , 2005 .

[28]  Manolis Papadrakakis,et al.  Metamodel-based computational techniques for solving structural optimization problems considering uncertainties , 2008 .

[29]  A. Dhingra,et al.  A genetic algorithm approach to single and multiobjective structural optimization with discrete–continuous variables , 1994 .

[30]  Manolis Papadrakakis,et al.  Th World Congresses of Structural and Multidisciplinary Optimization Multi-performance Robust Optimum Design of Steel Structures , 2022 .

[31]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[32]  G. Cheng,et al.  Robust design of non-linear structures using optimization methods , 2005 .

[33]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[34]  Janis Terpenny,et al.  Interactive Preference Incorporation in Evolutionary Engineering Design , 2005 .

[35]  Timothy M. Cameron,et al.  Robust design optimization of structures through consideration of variation , 2002 .

[36]  M. Papadrakakis,et al.  Multi-objective design optimization using cascade evolutionary computations , 2005 .

[37]  David E. Goldberg,et al.  ENGINEERING OPTIMIZATION VIA GENETIC ALGORITHM, IN WILL , 1986 .

[38]  Scott A. Burns,et al.  Recent advances in optimal structural design , 2002 .

[39]  Manolis Papadrakakis,et al.  Robust seismic design optimization of steel structures , 2007 .

[40]  Tomasz Arciszewski,et al.  Evolutionary computation and structural design: A survey of the state-of-the-art , 2005 .

[41]  David Greiner,et al.  Introducing Reference Point Using g-Dominance in Optimum Design Considering Uncertainties: An Application in Structural Engineering , 2011, EMO.

[42]  David Greiner,et al.  Robust design of frames under uncertain loads by multiobjective genetic algorithms , 2006 .

[43]  David Greiner,et al.  Structural robust design optimization of steel frames with engineering knowledge-based variance-reduction simulation , 2010 .