Robust eyeball segmentation in noisy iris images using fourier spectral density

In this paper, a new eyeball segmentation approach based on the Fourier spectral density is proposed for noisy iris images. The design of an accurate segmentation method for noisy iris images could make non-cooperative iris recognition possible. The proposed segmentation method aims to achieve high segmentation accuracy in defocused, reflection-contained and eyelid-occluded iris images. The proposed method could extract the eyeball region correctly in a significant number of noisy iris images from the UBIRIS database [16].

[1]  Ashok A. Ghatol,et al.  Iris recognition: an emerging biometric technology , 2007 .

[2]  Dexin Zhang,et al.  Personal Identification Based on Iris Texture Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Dexin Zhang,et al.  Local intensity variation analysis for iris recognition , 2004, Pattern Recognit..

[4]  Luís A. Alexandre,et al.  UBIRIS: A Noisy Iris Image Database , 2005, ICIAP.

[5]  Dexin Zhang,et al.  Efficient iris recognition by characterizing key local variations , 2004, IEEE Transactions on Image Processing.

[6]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[7]  Carmen Sanchez-Avila,et al.  Iris-based biometric recognition using dyadic wavelet transform , 2002 .

[8]  Carmen Sánchez Ávila,et al.  Two different approaches for iris recognition using Gabor filters and multiscale zero-crossing representation , 2005, Pattern Recognit..

[9]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Luís A. Alexandre,et al.  Iris segmentation methodology for non-cooperative recognition , 2006 .

[11]  Libor Machala,et al.  Human eye iris recognition using the mutual information , 2004 .

[12]  Mark J. T. Smith,et al.  Iris-Based Personal Authentication Using a Normalized Directional Energy Feature , 2003, AVBPA.

[13]  Lionel Torres,et al.  Person Identification Technique Using Human Iris Recognition , 2002 .

[14]  Boualem Boashash,et al.  A human identification technique using images of the iris and wavelet transform , 1998, IEEE Trans. Signal Process..

[15]  John Daugman,et al.  How iris recognition works , 2002, IEEE Transactions on Circuits and Systems for Video Technology.

[16]  John Daugman,et al.  The importance of being random: statistical principles of iris recognition , 2003, Pattern Recognit..

[17]  Carmen Sánchez Ávila,et al.  Iris Recognition with Low Template Size , 2001, AVBPA.

[18]  Richard P. Wildes,et al.  Reliable and fast eye finding in close-up images , 2002, Object recognition supported by user interaction for service robots.