Finite-time stabilization of nonlinear affine systems

In this paper, we address the problem of finite-time stabilization of nonlinear affine systems. The idea is to propose an explicit formula for a state feedback finite-time stabilizing controller expressed directly in terms of the vector fields defining the system model and an extra positive scalar. The method is simple and can be seen as an extension in the context of finite-time stability of the Sontag's method concerning a universal formula for nonlinear stabilization (Sontag, 1991). The method can also be applied to the case of certain and uncertain linear systems. Some examples illustrate the proposed theory and point out the simplicity of the proposed approach. RESUME. Dans cet article, on considere le probleme de stabilisation en temps fini des systemes non lineaires affines. L'idee est de proposer une formule explicite d'une loi de commande par retour d'etat exprimee en fonction des vecteurs definissant le modele du systeme et d'une certaine constante positive. La methode est simple et peut etre consideree comme une extension dans le cadre de la stabilisation en temps fini de la methode donnee par Sontag (1991) concernant la stabilisation des systemes affines. La methode peut etre etendue pour traiter aussi bien le cas des systemes lineaires certains qu'incertains. Certains exemples montrent les potentialites de la theorie ainsi que la simplicite de l'approche proposee.

[1]  V. Lakshmikantham,et al.  Practical Stability Of Nonlinear Systems , 1990 .

[2]  F. G. Garashchenko Study of practical stability problems by numerical methods and optimization of beam dynamics , 1987 .

[3]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[4]  P. Dorato SHORT-TIME STABILITY IN LINEAR TIME-VARYING SYSTEMS , 1961 .

[5]  Francesco Amato,et al.  Necessary and sufficient conditions for finite-time stability of linear systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[6]  W. Perruquetti,et al.  Lyapunov-based approach for finite time stability and stabilization , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[7]  Anthony N. Michel,et al.  On the bounds of the trajectories of differential systems , 1969 .

[8]  L. Weiss Converse Theorems for Finite Time Stability , 1968 .

[9]  P. Dorato,et al.  Finite time stability under perturbing forces and on product spaces , 1967, IEEE Transactions on Automatic Control.

[10]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .

[11]  Germain Garcia,et al.  Practical stability and stabilization of linear systems , 2009, 2009 17th Mediterranean Conference on Control and Automation.

[12]  Francesco Amato,et al.  Finite-time control of linear systems subject to parametric uncertainties and disturbances , 2001, Autom..

[13]  Carlo Cosentino,et al.  Finite-time stabilization via dynamic output feedback, , 2006, Autom..

[14]  Wilfrid Perruquetti,et al.  On practical stability with the settling time via vector norms , 1995 .

[15]  L. Grujic On practical stability , 1973 .

[16]  Sophie Tarbouriech,et al.  Finite-Time Stabilization of Linear Time-Varying Continuous Systems , 2009, IEEE Transactions on Automatic Control.