Dynamic microtubules produce an asymmetric E-cadherin–Bazooka complex to maintain segment boundaries

The combined action of dynamic microtubules and Rho signaling determines the level and asymmetric distribution of a mobile E-cadherin–Bazooka complex during the generation of a patterned epithelium.

[1]  H. Strutt,et al.  The Frizzled-dependent planar polarity pathway locally promotes E-cadherin turnover via recruitment of RhoGEF2 , 2013, Development.

[2]  J. Zallen,et al.  Regulation of cytoskeletal organization and junctional remodeling by the atypical cadherin Fat , 2013, Development.

[3]  V. Riechmann,et al.  Tao controls epithelial morphogenesis by promoting Fasciclin 2 endocytosis , 2012, The Journal of cell biology.

[4]  T. Lechler,et al.  Noncentrosomal microtubules and type II myosins potentiate epidermal cell adhesion and barrier formation , 2012, The Journal of cell biology.

[5]  M. Ikura,et al.  p120-catenin binding masks an endocytic signal conserved in classical cadherins , 2012, The Journal of cell biology.

[6]  Samantha J. Stehbens,et al.  Centralspindlin and α-catenin regulate Rho signalling at the epithelial zonula adherens , 2012, Nature Cell Biology.

[7]  C. Shuler,et al.  Multi‐Layered hypertrophied MEE formation by microtubule disruption via GEF‐H1/RhoA/ROCK signaling pathway , 2012, Developmental dynamics : an official publication of the American Association of Anatomists.

[8]  Shuang Huang,et al.  Regulation of myosin activation during cell–cell contact formation by Par3-Lgl antagonism: entosis without matrix detachment , 2012, Molecular biology of the cell.

[9]  M. Kaschube,et al.  Differential positioning of adherens junctions is associated with initiation of epithelial folding , 2012, Nature.

[10]  T. Lecuit,et al.  Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis , 2011, Nature Cell Biology.

[11]  D. Leckband,et al.  Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. , 2011, Physiological reviews.

[12]  E. Dejana,et al.  Adhesion molecule signalling: not always a sticky business , 2011, Nature Reviews Molecular Cell Biology.

[13]  E. Knust,et al.  Antagonistic Functions of Two Stardust Isoforms in Drosophila Photoreceptor Cells , 2010, Molecular biology of the cell.

[14]  N. Tolwinski,et al.  Spatially defined Dsh–Lgl interaction contributes to directional tissue morphogenesis , 2010, Journal of Cell Science.

[15]  Jennifer A Zallen,et al.  Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. , 2010, Developmental cell.

[16]  J. Ahringer,et al.  Cell Polarity in Eggs and Epithelia: Parallels and Diversity , 2010, Cell.

[17]  S. DiNardo,et al.  Actomyosin contractility and Discs large contribute to junctional conversion in guiding cell alignment within the Drosophila embryonic epithelium , 2010, Development.

[18]  M. Krahn,et al.  Membrane Targeting of Bazooka/PAR-3 Is Mediated by Direct Binding to Phosphoinositide Lipids , 2010, Current Biology.

[19]  Frank Jülicher,et al.  Increased Cell Bond Tension Governs Cell Sorting at the Drosophila Anteroposterior Compartment Boundary , 2009, Current Biology.

[20]  E. Knust,et al.  Crumbs stabilises epithelial polarity during tissue remodelling , 2009, Journal of Cell Science.

[21]  Sophie G. Martin,et al.  Shaping fission yeast with microtubules. , 2009, Cold Spring Harbor perspectives in biology.

[22]  Gary G. Borisy,et al.  Mammalian end binding proteins control persistent microtubule growth , 2009, The Journal of cell biology.

[23]  Samantha J. Stehbens,et al.  Touch, Grasp, Deliver and Control: Functional Cross‐Talk Between Microtubules and Cell Adhesions , 2009, Traffic.

[24]  S. Chu,et al.  Resolving cadherin interactions and binding cooperativity at the single-molecule level , 2009, Proceedings of the National Academy of Sciences.

[25]  A. Akhmanova,et al.  Organizing Junctions at the Cell-Cell Interface , 2008, Cell.

[26]  G. Berx,et al.  The cell-cell adhesion molecule E-cadherin , 2008, Cellular and Molecular Life Sciences.

[27]  G. C. Rogers,et al.  A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. , 2008, Molecular biology of the cell.

[28]  T. Lecuit,et al.  A two-tiered mechanism for stabilization and immobilization of E-cadherin , 2008, Nature.

[29]  A. D. den Hollander,et al.  Composition and function of the Crumbs protein complex in the mammalian retina. , 2008, Experimental eye research.

[30]  Anna Akhmanova,et al.  Tracking the ends: a dynamic protein network controls the fate of microtubule tips , 2008, Nature Reviews Molecular Cell Biology.

[31]  W. Nelson,et al.  Regulation of cell-cell adhesion by the cadherin-catenin complex. , 2008, Biochemical Society transactions.

[32]  Tobias A. Knoch,et al.  Dynamic behavior of GFP–CLIP-170 reveals fast protein turnover on microtubule plus ends , 2008, The Journal of cell biology.

[33]  K. Kaibuchi,et al.  Rho-kinase phosphorylates PAR-3 and disrupts PAR complex formation. , 2008, Developmental cell.

[34]  Liedewij Laan,et al.  Reconstitution of a microtubule plus-end tracking system in vitro , 2007, Nature.

[35]  D. Vestweber,et al.  A distinct PAR complex associates physically with VE‐cadherin in vertebrate endothelial cells , 2006, EMBO reports.

[36]  K. Irvine,et al.  Localization and requirement for Myosin II at the dorsal‐ventral compartment boundary of the Drosophila wing , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[37]  Jennifer A Zallen,et al.  Multicellular rosette formation links planar cell polarity to tissue morphogenesis. , 2006, Developmental cell.

[38]  S. DiNardo,et al.  Planar polarization of the denticle field in the Drosophila embryo: roles for Myosin II (zipper) and fringe. , 2006, Developmental biology.

[39]  Samantha J. Stehbens,et al.  Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts , 2006, Journal of Cell Science.

[40]  M. Peifer,et al.  Cytoskeletal dynamics and cell signaling during planar polarity establishment in the Drosophila embryonic denticle , 2006, Journal of Cell Science.

[41]  Mala Murthy,et al.  Drosophila exocyst components Sec5, Sec6, and Sec15 regulate DE-Cadherin trafficking from recycling endosomes to the plasma membrane. , 2005, Developmental cell.

[42]  M. Peifer,et al.  The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila , 2005, The Journal of cell biology.

[43]  R. Vale,et al.  The Drosophila Homologue of the Hereditary Spastic Paraplegia Protein, Spastin, Severs and Disassembles Microtubules , 2005, Current Biology.

[44]  Luis M. Escudero,et al.  Echinoid is a component of adherens junctions that cooperates with DE-Cadherin to mediate cell adhesion. , 2005, Developmental cell.

[45]  James G McNally,et al.  FRAP analysis of binding: proper and fitting. , 2005, Trends in cell biology.

[46]  K. Zinn,et al.  Drosophila Spastin Regulates Synaptic Microtubule Networks and Is Required for Normal Motor Function , 2004, PLoS biology.

[47]  C. Turck,et al.  Drosophila RhoGEF2 Associates with Microtubule Plus Ends in an EB1-Dependent Manner , 2004, Current Biology.

[48]  M. Peifer,et al.  Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila , 2004, The Journal of cell biology.

[49]  Jennifer A Zallen,et al.  Patterned gene expression directs bipolar planar polarity in Drosophila. , 2004, Developmental cell.

[50]  George H Patterson,et al.  Photobleaching and photoactivation: following protein dynamics in living cells. , 2003, Nature cell biology.

[51]  G. C. Rogers,et al.  Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle , 2002, The Journal of cell biology.

[52]  N. Takahashi,et al.  Protocadherin LKC, a new candidate for a tumor suppressor of colon and liver cancers, its association with contact inhibition of cell proliferation. , 2002, Carcinogenesis.

[53]  N. Brown,et al.  Rap1 GTPase Regulation of Adherens Junction Positioning and Cell Adhesion , 2002, Science.

[54]  Bénédicte Sanson,et al.  Generating patterns from fields of cells , 2001, EMBO reports.

[55]  S. Tsukita,et al.  Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells. , 2001, Journal of cell science.

[56]  Irina Kaverina,et al.  Microtubule Targeting of Substrate Contacts Promotes Their Relaxation and Dissociation , 1999, The Journal of cell biology.

[57]  Jean-Paul Vincent,et al.  The state of engrailed expression is not clonally transmitted during early Drosophila development , 1992, Cell.

[58]  A. Le Bivic,et al.  Microtubular organization and its involvement in the biogenetic pathways of plasma membrane proteins in Caco-2 intestinal epithelial cells , 1991, The Journal of cell biology.

[59]  Andrea H. Brand,et al.  An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos , 2010, Nature Cell Biology.

[60]  A. Blangy,et al.  Biogenesis of N-cadherin-dependent cell-cell contacts in living fibroblasts is a microtubule-dependent kinesin-driven mechanism. , 2002, Molecular biology of the cell.

[61]  B. Sanson Examples from Drosophila segmentation , 2001 .

[62]  W. J. Dickinson,et al.  Morphogenesis of denticles and hairs in Drosophila embryos: involvement of actin-associated proteins that also affect adult structures. , 1997, Cell motility and the cytoskeleton.