Iris tracking with feature free contours

An active contour method is presented and applied to robust iris tracking. The main strength of the method is that the contour model avoids explicit "feature" detection: contours are simply assumed to remove statistical dependencies on opposite sides of the contour. The contour model is utilized in particle filtering together with the EM algorithm. The method shows robustness to light changes and camera defocusing, and makes it possible to use off-the-shelf hardware for gaze-based interaction.

[1]  Andrew Blake,et al.  Articulated body motion capture by annealed particle filtering , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[2]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[3]  Yukio Kobayashi,et al.  A TV Camera System Which Extracts Feature Points For Non-Contact Eye Movement Detection , 1990, Other Conferences.

[4]  Alan L. Yuille,et al.  Fundamental Limits of Bayesian Inference: Order Parameters and Phase Transitions for Road Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Michael Isard,et al.  Partitioned Sampling, Articulated Objects, and Interface-Quality Hand Tracking , 2000, ECCV.

[6]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[7]  Alan L. Yuille,et al.  Feature extraction from faces using deformable templates , 2004, International Journal of Computer Vision.

[8]  Zhiwei Zhu,et al.  Combining Kalman filtering and mean shift for real time eye tracking under active IR illumination , 2002, Object recognition supported by user interaction for service robots.

[9]  Carlos Hitoshi Morimoto,et al.  Pupil detection and tracking using multiple light sources , 2000, Image Vis. Comput..

[10]  Peihua Li,et al.  Visual contour tracking based on particle filters , 2003, Image Vis. Comput..

[11]  Mark S. Nixon,et al.  Eye Spacing Measurement for Facial Recognition , 1985, Optics & Photonics.

[12]  Mads Nielsen,et al.  Eye typing using Markov and active appearance models , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[13]  R. S. Ramakrishna,et al.  Vision-based eye-gaze tracking for human computer interface , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[14]  Andrew Blake,et al.  A Probabilistic Exclusion Principle for Tracking Multiple Objects , 2004, International Journal of Computer Vision.

[15]  Qiang Ji,et al.  Real Time Visual Cues Extraction for Monitoring Driver Vigilance , 2001, ICVS.

[16]  Zhiwei Zhu,et al.  Real-time eye detection and tracking under various light conditions , 2002, ETRA.

[17]  Andrew Blake,et al.  A probabilistic contour discriminant for object localisation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[18]  Michael Isard,et al.  ICONDENSATION: Unifying Low-Level and High-Level Tracking in a Stochastic Framework , 1998, ECCV.

[19]  Yoshinobu Ebisawa,et al.  Effectiveness of pupil area detection technique using two light sources and image difference method , 1993, Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ.

[20]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[21]  Hanqi Zhuang,et al.  A cascaded scheme for eye tracking and head movement compensation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[22]  John Daugman,et al.  The importance of being random: statistical principles of iris recognition , 2003, Pattern Recognit..

[23]  Azriel Rosenfeld,et al.  A method of detecting and tracking irises and eyelids in video , 2002, Pattern Recognit..

[24]  David J. Fleet,et al.  People tracking using hybrid Monte Carlo filtering , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[25]  BlakeAndrew,et al.  C ONDENSATION Conditional Density Propagation forVisual Tracking , 1998 .

[26]  Anthony D. Worrall,et al.  Tracking with the EM Contour Algorithm , 2002, ECCV.

[27]  David Suter,et al.  Visual tracking of multiple objects with automatic motion model switching , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[28]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.