On the Number of Labeled Graphs of Bounded Treewidth

We focus on counting the number of labeled graphs on $n$ vertices and treewidth at most $k$ (or equivalently, the number of labeled partial $k$-trees), which we denote by $T_{n,k}$. So far, only the particular cases $T_{n,1}$ and $T_{n,2}$ had been studied. We show that $$ \left(c \cdot \frac{k\cdot 2^k \cdot n}{\log k} \right)^n \cdot 2^{-\frac{k(k+3)}{2}} \cdot k^{-2k-2}\ \leq\ T_{n,k}\ \leq\ \left(k \cdot 2^k \cdot n\right)^n \cdot 2^{-\frac{k(k+1)}{2}} \cdot k^{-k}, $$ for $k > 1$ and some explicit absolute constant $c > 0$. The upper bound is an immediate consequence of the well-known number of labeled $k$-trees, while the lower bound is obtained from an explicit algorithmic construction. It follows from this construction that both bounds also apply to graphs of pathwidth and proper-pathwidth at most $k$.

[1]  A. Cayley A theorem on trees , 2009 .

[2]  Dieter Mitsche,et al.  On Treewidth and Related Parameters of Random Geometric Graphs , 2012, SIAM J. Discret. Math..

[3]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[4]  Dominique Foata,et al.  Enumerating k-trees , 1971, Discret. Math..

[5]  B. Mohar,et al.  Graph Minors , 2009 .

[6]  Saket Saurabh,et al.  A Near-Optimal Planarization Algorithm , 2014, SODA.

[7]  Deryk Osthus,et al.  On random planar graphs, the number of planar graphs and their triangulations , 2003, J. Comb. Theory, Ser. B.

[8]  Atsushi Takahashi,et al.  Mixed Searching and Proper-Path-Width , 1991, Theor. Comput. Sci..

[9]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[10]  Hans L. Bodlaender,et al.  Only few graphs have bounded treewidth , 1992 .

[11]  Lowell W. Beineke,et al.  The number of labeled k-dimensional trees , 1969 .

[12]  Fedor V. Fomin,et al.  Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[13]  Yong Gao,et al.  Treewidth of Erdős-Rényi random graphs, random intersection graphs, and scale-free random graphs , 2009, Discret. Appl. Math..

[14]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[15]  Christophe Paul,et al.  Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions , 2012, ICALP.

[16]  Andrew Gainer-Dewar,et al.  Γ-Species and the Enumeration of k-Trees , 2012, Electron. J. Comb..

[17]  Paul D. Seymour,et al.  Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.

[18]  Michael Drmota,et al.  An Asymptotic Analysis of Labeled and Unlabeled k-Trees , 2016, Algorithmica.

[19]  Dieter Mitsche,et al.  On Treewidth and Related Parameters of Random Geometric Graphs , 2017, SIAM J. Discret. Math..

[20]  J. Moon The number of labeled k-trees , 1969 .

[21]  R. Halin S-functions for graphs , 1976 .

[22]  Marc Noy,et al.  Enumeration and limit laws for series-parallel graphs , 2007, Eur. J. Comb..

[23]  Jakub Gajarský,et al.  Kernelization Using Structural Parameters on Sparse Graph Classes , 2013, ESA.

[24]  Lajos Takács,et al.  On the Number of Distinct Forests , 1990, SIAM J. Discret. Math..

[25]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[26]  Frank Harary,et al.  Graph Theory , 2016 .

[27]  Ira M. Gessel,et al.  Counting unlabeled k-trees , 2013, J. Comb. Theory, Ser. A.

[28]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[29]  F. Harary,et al.  On acyclic simplicial complexes , 1968 .

[30]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs VIII: Orientations , 1995, Ann. Pure Appl. Log..

[31]  Oriol Serra,et al.  On the tree-depth of Random Graphs , 2014, Discret. Appl. Math..

[32]  Sang-il Oum,et al.  Rank‐width of random graphs , 2010, J. Graph Theory.

[33]  Atsushi Takahashi,et al.  Minimal acyclic forbidden minors for the family of graphs with bounded path-width , 1994, Discret. Math..