Perturbative 2-body parent Hamiltonians for projected entangled pair states

We construct parent Hamiltonians involving only local 2-body interactions for a broad class of Projected Entangled Pair States (PEPS). Making use of perturbation gadget techniques, we define a perturbative Hamiltonian acting on the virtual PEPS space with a finite order low energy effective Hamiltonian that is a gapped, frustration-free parent Hamiltonian for an encoded version of a desired PEPS. For topologically ordered PEPS, the ground space of the low energy effective Hamiltonian is shown to be in the same phase as the desired state to all orders of perturbation theory. An encoded parent Hamiltonian for the double semion string net ground state is explicitly constructed as a concrete example.

[1]  J. Schrieffer,et al.  Relation between the Anderson and Kondo Hamiltonians , 1966 .

[2]  E. Lieb,et al.  Valence bond ground states in isotropic quantum antiferromagnets , 1988 .

[3]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[4]  Nilanjana Datta,et al.  Low-temperature phase diagrams of quantum lattice systems. II, Convergent perturbation expansions and stability in systems with infinite degeneracy , 1997 .

[5]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[6]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[7]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[8]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[9]  David Pérez-García,et al.  PROJECTED ENTANGLED STATES: PROPERTIES AND APPLICATIONS , 2006 .

[10]  Simple nearest-neighbor two-body Hamiltonian system for which the ground state is a universal resource for quantum computation , 2006, quant-ph/0609002.

[11]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[12]  M. B. Hastings,et al.  Solving gapped Hamiltonians locally , 2006 .

[13]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[14]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[15]  Frank Verstraete,et al.  Peps as unique ground states of local hamiltonians , 2007, Quantum Inf. Comput..

[16]  H. Briegel,et al.  Graph states as ground states of many-body spin-1/2 Hamiltonians , 2006, quant-ph/0612186.

[17]  E. Farhi,et al.  Perturbative gadgets at arbitrary orders , 2008, 0802.1874.

[18]  Barbara M. Terhal,et al.  The complexity of quantum spin systems on a two-dimensional square lattice , 2008, Quantum Inf. Comput..

[19]  Xiao-Gang Wen,et al.  Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions , 2008 .

[20]  D. DiVincenzo,et al.  Quantum simulation of many-body Hamiltonians using perturbation theory with bounded-strength interactions. , 2008, Physical review letters.

[21]  Linear independence of nearest-neighbor valence-bond states on the kagome lattice and construction of S U ( 2 ) -invariant spin- 1 2 Hamiltonian with a Sutherland-Rokhsar-Kivelson quantum liquid ground state , 2009, 0906.0357.

[22]  Xiao-Gang Wen,et al.  Tensor-product representations for string-net condensed states , 2008, 0809.2821.

[23]  M. Aguado,et al.  Explicit tensor network representation for the ground states of string-net models , 2008, 0809.2393.

[24]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[25]  M. B. Hastings,et al.  A Short Proof of Stability of Topological Order under Local Perturbations , 2010, 1001.4363.

[26]  Sergey Bravyi,et al.  Topological quantum order: Stability under local perturbations , 2010, 1001.0344.

[27]  D. Pérez-García,et al.  PEPS as ground states: Degeneracy and topology , 2010, 1001.3807.

[28]  Tzu-Chieh Wei,et al.  The 2D AKLT state is a universal quantum computational resource , 2010 .

[29]  A. Doherty,et al.  Toric codes and quantum doubles from two-body Hamiltonians , 2010, 1011.1942.

[30]  D. DiVincenzo,et al.  Schrieffer-Wolff transformation for quantum many-body systems , 2011, 1105.0675.

[31]  Tzu-Chieh Wei,et al.  Affleck-Kennedy-Lieb-Tasaki state on a honeycomb lattice is a universal quantum computational resource. , 2011, Physical review letters.

[32]  David Pérez-García,et al.  Classifying quantum phases using matrix product states and projected entangled pair states , 2011 .

[33]  J. Cirac,et al.  Resonating valence bond states in the PEPS formalism , 2012, 1203.4816.

[34]  Andrew S. Darmawan,et al.  Measurement-based quantum computation in a two-dimensional phase of matter , 2011, 1108.4741.

[35]  Justyna P. Zwolak,et al.  Stability of Frustration-Free Hamiltonians , 2011, 1109.1588.

[36]  M. Christandl,et al.  A hierarchy of topological tensor network states , 2010, 1007.5283.

[37]  D. Perez-Garcia,et al.  Robustness in projected entangled pair states , 2013 .

[38]  O. Buerschaper Twisted injectivity in projected entangled pair states and the classification of quantum phases , 2013, 1307.7763.

[39]  Norbert Schuch,et al.  Characterizing Topological Order with Matrix Product Operators , 2014, Annales Henri Poincaré.

[40]  Michael Marien,et al.  Matrix product operators for symmetry-protected topological phases , 2014, 1412.5604.

[41]  M. Wolf,et al.  Perturbation Theory for Parent Hamiltonians of Matrix Product States , 2014, 1402.4175.