Animal diversity and ecosystem functioning in dynamic food webs

Species diversity is changing globally and locally, but the complexity of ecological communities hampers a general understanding of the consequences of animal species loss on ecosystem functioning. High animal diversity increases complementarity of herbivores but also increases feeding rates within the consumer guild. Depending on the balance of these counteracting mechanisms, species-rich animal communities may put plants under top-down control or may release them from grazing pressure. Using a dynamic food-web model with body-mass constraints, we simulate ecosystem functions of 20,000 communities of varying animal diversity. We show that diverse animal communities accumulate more biomass and are more exploitative on plants, despite their higher rates of intra-guild predation. However, they do not reduce plant biomass because the communities are composed of larger, and thus energetically more efficient, plant and animal species. This plasticity of community body-size structure reconciles the debate on the consequences of animal species loss for primary productivity.

[1]  Neo D. Martinez,et al.  Simple prediction of interaction strengths in complex food webs , 2009, Proceedings of the National Academy of Sciences.

[2]  Stefano Allesina,et al.  Relevance of evolutionary history for food web structure , 2012, Proceedings of the Royal Society B: Biological Sciences.

[3]  Michel Loreau,et al.  From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis , 2010 .

[4]  Anthony R. Ives,et al.  Food-web interactions govern the resistance of communities after non-random extinctions , 2004, Nature.

[5]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[6]  Julie A. Jedlicka,et al.  Effects of Natural Enemy Biodiversity on the Suppression of Arthropod Herbivores in Terrestrial Ecosystems , 2009 .

[7]  J. Duffy,et al.  Biodiversity and ecosystem function: the consumer connection , 2002 .

[8]  Guy Woodward,et al.  Emerging horizons in biodiversity and ecosystem functioning research. , 2009, Trends in ecology & evolution.

[9]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[10]  Barbara Drossel,et al.  Interactive effects of body-size structure and adaptive foraging on food-web stability. , 2012, Ecology letters.

[11]  O. Schmitz,et al.  Adaptive foraging and flexible food web topology , 2003 .

[12]  Jens O. Riede,et al.  Scaling of Food-Web Properties with Diversity and Complexity Across Ecosystems , 2010 .

[13]  Jens O. Riede,et al.  Stepping in Elton's footprints: a general scaling model for body masses and trophic levels across ecosystems. , 2011, Ecology letters.

[14]  J. F. Gilliam,et al.  FUNCTIONAL RESPONSES WITH PREDATOR INTERFERENCE: VIABLE ALTERNATIVES TO THE HOLLING TYPE II MODEL , 2001 .

[15]  Michel Loreau,et al.  Food-web constraints on biodiversity–ecosystem functioning relationships , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Björn C. Rall,et al.  Ecological stability in response to warming , 2014 .

[17]  M. Loreau,et al.  The relationship between biodiversity and ecosystem functioning in food webs , 2005, Ecological Research.

[18]  V. Savage,et al.  The Body Size Dependence of Trophic Cascades , 2015, The American Naturalist.

[19]  Donald R. Strong,et al.  ARE TROPHIC CASCADES ALL WET? DIFFERENTIATION AND DONOR-CONTROL IN SPECIOSE ECOSYSTEMS' , 1992 .

[20]  R. Denno,et al.  Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades , 2005 .

[21]  W. E. Snyder,et al.  Niche Partitioning Increases Resource Exploitation by Diverse Communities , 2008, Science.

[22]  A. Ives,et al.  A synthesis of subdisciplines: predator–prey interactions, and biodiversity and ecosystem functioning , 2004 .

[23]  A Sih,et al.  Emergent impacts of multiple predators on prey. , 1998, Trends in ecology & evolution.

[24]  Florian D. Schneider,et al.  Body masses, functional responses and predator-prey stability. , 2013, Ecology letters.

[25]  J. P. Grime,et al.  Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges , 2001, Science.

[26]  M. Loreau,et al.  Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Downing,et al.  Biodiversity and stability in grasslands , 1996, Nature.

[28]  Ulrich Brose,et al.  Allometric degree distributions facilitate food-web stability , 2007, Nature.

[29]  E. Berlow,et al.  Foraging theory predicts predator-prey energy fluxes. , 2008, The Journal of animal ecology.

[30]  David Tilman Resource Competition and Community Structure. (MPB-17), Volume 17 , 1982 .

[31]  Neo D. Martinez,et al.  Simple rules yield complex food webs , 2000, Nature.

[32]  U. Brose,et al.  Allometric functional response model: body masses constrain interaction strengths. , 2010, The Journal of animal ecology.

[33]  D. Wise,et al.  Terrestrial Trophic Cascades: How Much Do They Trickle? , 2001, The American Naturalist.

[34]  Samraat Pawar,et al.  Dimensionality of consumer search space drives trophic interaction strengths , 2012, Nature.

[35]  Katherine L. Gross,et al.  WHAT IS THE OBSERVED RELATIONSHIP BETWEEN SPECIES RICHNESS AND PRODUCTIVITY , 2001 .

[36]  G. Polis,et al.  Food Web Complexity and Community Dynamics , 1996, The American Naturalist.

[37]  Jens O. Riede,et al.  Body sizes, cumulative and allometric degree distributions across natural food webs , 2011 .

[38]  J. Lawton,et al.  Declining biodiversity can alter the performance of ecosystems , 1994, Nature.

[39]  R. Denno,et al.  Predator diversity dampens trophic cascades , 2004, Nature.

[40]  Elizabeth T. Borer,et al.  A cross-ecosystem comparison of the strength of trophic cascades , 2002 .

[41]  Leslie A. Real,et al.  The Kinetics of Functional Response , 1977, The American Naturalist.

[42]  John P. DeLong,et al.  Predator–prey dynamics and the plasticity of predator body size , 2014 .

[43]  Kate E. Jones,et al.  Multiple Causes of High Extinction Risk in Large Mammal Species , 2005, Science.

[44]  Florian D. Schneider,et al.  Body mass constraints on feeding rates determine the consequences of predator loss. , 2012, Ecology letters.

[45]  Owen L. Petchey,et al.  Universal temperature and body-mass scaling of feeding rates , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[46]  M Gyllenberg,et al.  Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. , 1998, Theoretical population biology.

[47]  Barbara Bauer,et al.  Diversity, Functional Similarity, and Top-Down Control Drive Synchronization and the Reliability of Ecosystem Function , 2014, The American Naturalist.

[48]  Björn C. Rall,et al.  The dynamics of food chains under climate change and nutrient enrichment , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[49]  Cole,et al.  Trophic cascades revealed in diverse ecosystems. , 1999, Trends in ecology & evolution.

[50]  R. Peters The Ecological Implications of Body Size , 1983 .

[51]  L. Amaral,et al.  The role of body mass in diet contiguity and food-web structure. , 2011, The Journal of animal ecology.

[52]  Neo D. Martinez,et al.  Allometric scaling enhances stability in complex food webs. , 2006, Ecology letters.

[53]  Guy Woodward,et al.  Body size in ecological networks. , 2005, Trends in ecology & evolution.

[54]  F. Chapin,et al.  EFFECTS OF BIODIVERSITY ON ECOSYSTEM FUNCTIONING: A CONSENSUS OF CURRENT KNOWLEDGE , 2005 .

[55]  J. Huisman,et al.  Biodiversity of plankton by species oscillations and chaos , 1999, Nature.

[56]  D. Tilman Resource competition and community structure. , 1983, Monographs in population biology.

[57]  Ulrich Brose,et al.  Complex food webs prevent competitive exclusion among producer species , 2008, Proceedings of the Royal Society B: Biological Sciences.

[58]  Michel Loreau,et al.  The functional role of biodiversity in ecosystems: incorporating trophic complexity. , 2007, Ecology letters.

[59]  Owen L Petchey,et al.  Size, foraging, and food web structure , 2008, Proceedings of the National Academy of Sciences.

[60]  P. Yodzis,et al.  Body Size and Consumer-Resource Dynamics , 1992, The American Naturalist.