A robust and high-throughput Cre reporting and characterization system for the whole mouse brain

The Cre/lox system is widely used in mice to achieve cell-type-specific gene expression. However, a strong and universally responding system to express genes under Cre control is still lacking. We have generated a set of Cre reporter mice with strong, ubiquitous expression of fluorescent proteins of different spectra. The robust native fluorescence of these reporters enables direct visualization of fine dendritic structures and axonal projections of the labeled neurons, which is useful in mapping neuronal circuitry, imaging and tracking specific cell populations in vivo. Using these reporters and a high-throughput in situ hybridization platform, we are systematically profiling Cre-directed gene expression throughout the mouse brain in several Cre-driver lines, including new Cre lines targeting different cell types in the cortex. Our expression data are displayed in a public online database to help researchers assess the utility of various Cre-driver lines for cell-type-specific genetic manipulation.

[1]  H. Happe,et al.  Postnatal development of the dopamine transporter: a quantitative autoradiographic study. , 1996, Brain research. Developmental brain research.

[2]  David J. Anderson,et al.  Subregion- and Cell Type–Restricted Gene Knockout in Mouse Brain , 1996, Cell.

[3]  Frank Buchholz,et al.  A new logic for DNA engineering using recombination in Escherichia coli , 1998, Nature Genetics.

[4]  T. Hope,et al.  Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element Enhances Expression of Transgenes Delivered by Retroviral Vectors , 1999, Journal of Virology.

[5]  Philippe Soriano Generalized lacZ expression with the ROSA26 Cre reporter strain , 1999, Nature Genetics.

[6]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[7]  B. Hogan,et al.  Retina‐ and ventral forebrain‐specific Cre recombinase activity in transgenic mice , 2000, Genesis.

[8]  Caiying Guo,et al.  Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon cre‐mediated excision , 2000, Genesis.

[9]  K. Willecke,et al.  hGFAP‐cre transgenic mice for manipulation of glial and neuronal function in vivo , 2001, Genesis.

[10]  Shankar Srinivas,et al.  Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus , 2001, BMC Developmental Biology.

[11]  David Kleinfeld,et al.  Principles, Design,and Construction of a Two-Photon Laser-Scanning Microscopefor In Vitro and In Vivo Brain Imaging , 2002 .

[12]  R. Frostig In Vivo Optical Imaging of Brain Function , 2002 .

[13]  Luis Puelles,et al.  Cortical Excitatory Neurons and Glia, But Not GABAergic Neurons, Are Produced in the Emx1-Expressing Lineage , 2002, The Journal of Neuroscience.

[14]  Andrew P McMahon,et al.  Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. , 2004, Developmental biology.

[15]  B. Lowell,et al.  Leptin Receptor Signaling in POMC Neurons Is Required for Normal Body Weight Homeostasis , 2004, Neuron.

[16]  Smaroula Dilioglou,et al.  Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide–based retroviral vector , 2004, Nature Biotechnology.

[17]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[18]  R. Palmiter,et al.  NPY/AgRP Neurons Are Essential for Feeding in Adult Mice but Can Be Ablated in Neonates , 2005, Science.

[19]  René Hen,et al.  Targeted gene expression in dopamine and serotonin neurons of the mouse brain , 2005, Journal of Neuroscience Methods.

[20]  Karel Svoboda,et al.  Rapid and Reversible Chemical Inactivation of Synaptic Transmission in Genetically Targeted Neurons , 2005, Neuron.

[21]  S. Arber,et al.  A Developmental Switch in the Response of DRG Neurons to ETS Transcription Factor Signaling , 2005, PLoS biology.

[22]  L. Luo,et al.  Mosaic Analysis with Double Markers in Mice , 2005, Cell.

[23]  Karel Svoboda,et al.  Experience-dependent and cell-type-specific spine growth in the neocortex , 2006, Nature.

[24]  E. Callaway,et al.  Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin , 2006, The Journal of comparative neurology.

[25]  O. Garaschuk,et al.  Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo , 2006, Nature Protocols.

[26]  S. Nelson,et al.  Molecular taxonomy of major neuronal classes in the adult mouse forebrain , 2006, Nature Neuroscience.

[27]  E. Kandel,et al.  Transient and Selective Overexpression of Dopamine D2 Receptors in the Striatum Causes Persistent Abnormalities in Prefrontal Cortex Functioning , 2006, Neuron.

[28]  Allan R. Jones,et al.  Neuroinformatics for Genome-Wide 3-D Gene Expression Mapping in the Mouse Brain , 2007, TCBB.

[29]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[30]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[31]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[32]  Marina Gertsenstein,et al.  Developmental and adult phenotyping directly from mutant embryonic stem cells , 2007, Proceedings of the National Academy of Sciences.

[33]  Charles R. Gerfen,et al.  Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs , 2007, The Journal of Neuroscience.

[34]  Lydia Ng,et al.  Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain , 2008, BMC Bioinformatics.

[35]  Brian B. Avants,et al.  Neuroinformatics for Genome-Wide 3-D Gene Expression Mapping in the Mouse Brain , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[36]  C. S. Raymond,et al.  High-Efficiency FLP and ΦC31 Site-Specific Recombination in Mammalian Cells , 2007, PloS one.

[37]  L. Luo,et al.  A global double‐fluorescent Cre reporter mouse , 2007, Genesis.

[38]  M. Wilson,et al.  Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hippocampal Network , 2007, Science.

[39]  Alison L. Barth,et al.  Visualizing circuits and systems using transgenic reporters of neural activity , 2007, Current Opinion in Neurobiology.

[40]  M. Davidson,et al.  Advances in fluorescent protein technology , 2011, Journal of Cell Science.

[41]  J. Price :Allen Reference Atlas: A Digital Color Brain Atlas of the C57BL/6J Male Mouse , 2008 .

[42]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[43]  Susumu Tonegawa,et al.  Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning , 2008, Science.

[44]  Hong Wei Dong,et al.  Allen reference atlas : a digital color brain atlas of the C57Black/6J male mouse , 2008 .

[45]  Jeremy Nathans,et al.  Genetically-Directed, Cell Type-Specific Sparse Labeling for the Analysis of Neuronal Morphology , 2008, PloS one.

[46]  Allan R. Jones,et al.  Genomic Anatomy of the Hippocampus , 2008, Neuron.

[47]  R. Palmiter,et al.  Deletion of GAD67 in dopamine receptor‐1 expressing cells causes specific motor deficits , 2008, Genesis.

[48]  S. Sternson,et al.  A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-Range Circuit Mapping , 2008, The Journal of Neuroscience.

[49]  Z. J. Huang,et al.  High-Resolution Labeling and Functional Manipulation of Specific Neuron Types in Mouse Brain by Cre-Activated Viral Gene Expression , 2008, PloS one.