New quadrature approach based on operational matrix for solving a class of fractional variational problems

This manuscript presents a new numerical approach to approximate the solution of a class of fractional variational problems. The presented approach is consisting of using the shifted Legendre orthonormal polynomials as basis functions of the operational matrix of fractional derivatives (described in the Caputo sense) and that of fractional integrals (described in the sense of Riemann-Liouville) with the help of the Legendre-Gauss quadrature formula together with the Lagrange multipliers method for converting such fractional variational problems into easier problems that consist of solving an algebraic system in the unknown coefficients. The convergence of the proposed method is analyzed. Finally, in order to demonstrate the accuracy of the present method, some test problems are introduced with their approximate solutions and comparisons with other numerical approaches.

[1]  Ali H. Bhrawy,et al.  An Efficient Legendre Spectral Tau Matrix Formulation for Solving Fractional Subdiffusion and Reaction Subdiffusion Equations , 2015 .

[2]  Hong Wang,et al.  Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations , 2014, J. Comput. Phys..

[3]  S. A. Yousefi,et al.  A numerical technique for solving a class of fractional variational problems , 2013, J. Comput. Appl. Math..

[4]  V. Vyawahare,et al.  Fractional-order modeling of neutron transport in a nuclear reactor , 2013 .

[5]  Dumitru Baleanu,et al.  A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems , 2017 .

[6]  L. Gaul,et al.  Damping description involving fractional operators , 1991 .

[7]  Saeid Abbasbandy,et al.  Direct solution of a type of constrained fractional variational problems via an adaptive pseudospectral method , 2015, J. Comput. Appl. Math..

[8]  Om P. Agrawal,et al.  Generalized Euler—Lagrange Equations and Transversality Conditions for FVPs in terms of the Caputo Derivative , 2007 .

[9]  J. A. Tenreiro Machado,et al.  An Efficient Numerical Scheme for Solving Multi‐Dimensional Fractional Optimal Control Problems With a Quadratic Performance Index , 2015 .

[10]  M. A. Abdelkawy,et al.  Efficient Spectral Collocation Algorithm for a Two-Sided Space Fractional Boussinesq Equation with Non-local Conditions , 2016 .

[11]  P Monica,et al.  Optimal control of electromagnetic energy , 2010 .

[12]  Fawang Liu,et al.  Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation , 2014 .

[13]  Ronald A. DeVore,et al.  Error Bounds for Gaussian Quadrature and Weighted-$L^1$ Polynomial Approximation , 1984 .

[14]  T. J. Rivlin An Introduction to the Approximation of Functions , 2003 .

[15]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[16]  Lifeng Wang,et al.  Haar wavelet method for solving fractional partial differential equations numerically , 2014, Appl. Math. Comput..

[17]  S. S. Ezz-Eldien,et al.  A new Legendre operational technique for delay fractional optimal control problems , 2016 .

[18]  S. S. Ezz-Eldien,et al.  A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems , 2014 .

[19]  Delfim F. M. Torres,et al.  Optimality conditions for fractional variational problems with dependence on a combined Caputo derivative of variable order , 2015, Optimization.

[20]  Fernando B. Duarte,et al.  Application of Fractional Calculus in the Dynamical Analysis and Control of Mechanical Manipulators , 2008 .

[21]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[22]  Agnieszka B. Malinowska,et al.  Fractional Variational Calculus with Classical and Combined Caputo Derivatives , 2011, 1101.2932.

[23]  H. Saunders,et al.  Literature Review : SOLID MECHANICS: A VARIATIONAL APPROACH C. L. Dym and I.H. Shames McGraw-Hill Inc. , New York, N. Y. (1973) , 1974 .

[24]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[25]  Dumitru Baleanu,et al.  An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems , 2015, Advances in Difference Equations.

[26]  L. Elsgolts Differential Equations and the Calculus of Variations , 2003 .

[27]  Agnieszka B. Malinowska,et al.  A fractional calculus of variations for multiple integrals with application to vibrating string , 2010, 1001.2722.

[28]  T. Atanacković,et al.  Variational problems with fractional derivatives: Euler–Lagrange equations , 2008, 1101.2961.

[29]  Delfim F. M. Torres,et al.  Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term , 2013, 1305.1859.

[30]  Saudi Arabia,et al.  AN ACCURATE NUMERICAL TECHNIQUE FOR SOLVING FRACTIONAL OPTIMAL CONTROL PROBLEMS , 2015 .

[31]  K. Burrage,et al.  The use of a Riesz fractional differential-based approach for texture enhancement in image processing , 2013 .

[32]  O. Agrawal A general finite element formulation for fractional variational problems , 2008 .

[33]  Delfim F. M. Torres,et al.  Discrete-time fractional variational problems , 2010, Signal Process..

[34]  J. Tenreiro Machado,et al.  Efficient Legendre spectral tau algorithm for solving the two-sided space–time Caputo fractional advection–dispersion equation , 2016 .

[35]  Dumitru Baleanu,et al.  New Numerical Approach for Fractional Variational Problems Using Shifted Legendre Orthonormal Polynomials , 2017, J. Optim. Theory Appl..

[36]  Irving H. Shames,et al.  Solid mechanics: a variational approach , 1973 .

[37]  Delfim F. M. Torres,et al.  Minimal modified energy control for fractional linear control systems with the Caputo derivative , 2010, 1004.3113.

[38]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[39]  J. L. Lage,et al.  Application of Fractional Calculus to Fluid Mechanics , 2002 .

[40]  Lina Song,et al.  A new improved Adomian decomposition method and its application to fractional differential equations , 2013 .

[41]  Mehdi Dehghan,et al.  A numerical technique for solving fractional optimal control problems , 2011, Comput. Math. Appl..

[42]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[43]  S. Ikhdair,et al.  Bound states of spatially dependent mass Dirac equation with the Eckart potential including Coulomb tensor interaction , 2014, 1401.7142.

[44]  Mehdi Dehghan,et al.  A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modified Jacobi polynomials , 2016 .

[45]  R. Metzler,et al.  Relaxation in filled polymers: A fractional calculus approach , 1995 .

[46]  Jun Huang,et al.  Wavelet operational matrix method for solving fractional differential equations with variable coefficients , 2014, Appl. Math. Comput..

[47]  Da Xu,et al.  Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation , 2014, J. Comput. Phys..

[48]  Dumitru Baleanu,et al.  A Jacobi Gauss–Lobatto and Gauss–Radau collocation algorithm for solving fractional Fokker–Planck equations , 2015 .

[49]  Aiguo Xiao,et al.  Fractional variational integrators for fractional variational problems , 2012 .

[50]  Stevan Pilipović,et al.  Variational Problems with Fractional Derivatives , 2014 .