A time‐staggered partitioned coupling algorithm for transient heat conduction

We present a time-staggered partitioned coupling algorithm for transient heat conduction finite element simulations. This algorithm divides a large structural mesh into a number of smaller subdomains, solves the individual subdomains separately and couples the solutions to obtain the response to the original problem. The proposed algorithm is a mixed multi-timestep algorithm and enables arbitrary time integration schemes and meshes to be coupled with different timesteps in the various subdomains. In this procedure, the solution of each partition is separately evaluated over a system timestep after which the interfacial conditions are enforced making this a staggered algorithm that facilitates parallel computation. We present examples showing the feasibility of the coupling algorithm and discuss the merits in terms of convergence and stability.

[1]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[2]  Ted Belytschko,et al.  Multi-time-step integration using nodal partitioning , 1988 .

[3]  Ted Belytschko,et al.  Mixed methods for time integration , 1979 .

[4]  Ted Belytschko,et al.  A survey of numerical methods and computer programs for dynamic structural analysis , 1976 .

[5]  Thomas J. R. Hughes,et al.  Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory , 1978 .

[6]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[7]  Wing Kam Liu,et al.  Stability of multi-time step partitioned integrators for first-order finite element systems , 1985 .

[8]  Thomas J. R. Hughes,et al.  IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS: IMPLEMENTATION AND NUMERICAL EXAMPLES. , 1978 .

[9]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[10]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[11]  van Eh Harald Brummelen,et al.  A monolithic approach to fluid–structure interaction , 2004 .

[12]  K. C. Park,et al.  Partitioned Transient Analysis Procedures for Coupled-Field Problems. , 1979 .

[13]  Ted Belytschko,et al.  Mixed-time implicit-explicit finite elements for transient analysis , 1982 .

[14]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[15]  Charbel Farhat,et al.  Partitioned analysis of coupled mechanical systems , 2001 .

[16]  Thomas J. R. Hughes,et al.  Implicit-explicit finite elements in nonlinear transient analysis , 1979 .

[17]  Wing Kam Liu,et al.  Convergence of an element‐partitioned subcycling algorithm for the semi‐discrete heat equation , 1987 .

[18]  T. Belytschko,et al.  Stability of explicit‐implicit mesh partitions in time integration , 1978 .

[19]  Ted Belytschko,et al.  Stability of multi-time step partitioned transient analysis for first-order systems of equation , 1987 .

[20]  Deepak V. Kulkarni,et al.  Discontinuous Galerkin framework for adaptive solution of parabolic problems , 2007 .