The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution

[1]  Angela D. Wilkins,et al.  Disentangling evolutionary signals: conservation, specificity determining positions and coevolution. Implication for catalytic residue prediction , 2012, BMC Bioinformatics.

[2]  Justin N. Vaughn,et al.  Reference genome sequence of the model plant Setaria , 2012, Nature Biotechnology.

[3]  Damon Lisch,et al.  Transposable element origins of epigenetic gene regulation. , 2011, Current opinion in plant biology.

[4]  James C. Schnable,et al.  Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss , 2011, Proceedings of the National Academy of Sciences.

[5]  B. Gaut,et al.  Genome Size and Transposable Element Content as Determined by High-Throughput Sequencing in Maize and Zea luxurians , 2011, Genome biology and evolution.

[6]  M. Grandbastien,et al.  Mobilization of retrotransposons in synthetic allotetraploid tobacco. , 2010, The New phytologist.

[7]  Christian Parisod,et al.  Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. , 2009, The New phytologist.

[8]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[9]  Cristian Chaparro,et al.  Exceptional Diversity, Non-Random Distribution, and Rapid Evolution of Retroelements in the B73 Maize Genome , 2009, PLoS genetics.

[10]  Patrick S. Schnable,et al.  Maize Inbreds Exhibit High Levels of Copy Number Variation (CNV) and Presence/Absence Variation (PAV) in Genome Content , 2009, PLoS genetics.

[11]  Ryan A. Rapp,et al.  Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants , 2009, Proceedings of the National Academy of Sciences.

[12]  T. Kakutani,et al.  Bursts of retrotransposition reproduced in Arabidopsis , 2009, Nature.

[13]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[14]  B. Piégu,et al.  Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTR-retrotransposon Route66 in Poaceae , 2009, BMC Evolutionary Biology.

[15]  E. Kellogg,et al.  The age of the grasses and clusters of origins of C4 photosynthesis , 2008 .

[16]  E. Mardis Next-generation DNA sequencing methods. , 2008, Annual review of genomics and human genetics.

[17]  J. Bennetzen,et al.  Enchilada redux: how complete is your genome sequence? , 2008, The New phytologist.

[18]  Renyi Liu,et al.  Discovery and assembly of repeat family pseudomolecules from sparse genomic sequence data using the Assisted Automated Assembler of Repeat Families (AAARF) algorithm , 2008, BMC Bioinformatics.

[19]  Andrea Zuccolo,et al.  Transposable element distribution, abundance and role in genome size variation in the genus Oryza , 2007, BMC Evolutionary Biology.

[20]  J. Bennetzen,et al.  A GeneTrek analysis of the maize genome , 2007, Proceedings of the National Academy of Sciences.

[21]  J. Bennetzen,et al.  Patterns in grass genome evolution. , 2007, Current opinion in plant biology.

[22]  H. Dooner,et al.  Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus , 2006, Proceedings of the National Academy of Sciences.

[23]  Rod A Wing,et al.  Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. , 2006, Genome research.

[24]  S. Jackson,et al.  Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. , 2006, Genome research.

[25]  Brian C. Thomas,et al.  Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. , 2006, Genome research.

[26]  J. Bennetzen,et al.  Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Michael Freeling,et al.  Horizontal Transfer of a Plant Transposon , 2005, PLoS biology.

[28]  Jianxin Ma,et al.  Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  P. Hooykaas,et al.  An Arabidopsis hAT-like transposase is essential for plant development , 2005, Nature.

[30]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[31]  Jonathan Pevsner,et al.  Basic Local Alignment Search Tool (BLAST) , 2005 .

[32]  R. Doerge,et al.  Genomic changes in synthetic Arabidopsis polyploids. , 2004, The Plant journal : for cell and molecular biology.

[33]  J. Bennetzen,et al.  Mechanisms of recent genome size variation in flowering plants. , 2005, Annals of botany.

[34]  Jianxin Ma,et al.  Close split of sorghum and maize genome progenitors. , 2004, Genome research.

[35]  Elizabeth A Kellogg,et al.  The evolution of nuclear genome structure in seed plants. , 2004, American journal of botany.

[36]  Dan Nettleton,et al.  Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae , 2004, Genome Biology.

[37]  A. Paterson,et al.  Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Jianxin Ma,et al.  Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. , 2004, Genome research.

[39]  C. Robin Buell,et al.  The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants , 2004, Nucleic Acids Res..

[40]  J. Bennetzen,et al.  A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Amasino,et al.  Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[42]  P. Quail,et al.  The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. , 2003, The Plant journal : for cell and molecular biology.

[43]  T. Wicker,et al.  Rapid Genome Divergence at Orthologous Low Molecular Weight Glutenin Loci of the A and A m Genomes of Wheat , 2003 .

[44]  James K. M. Brown,et al.  Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. , 2002, Genome research.

[45]  E. Kellogg,et al.  Phylogeny of Andropogoneae Inferred from Phytochrome B, GBSSI, and ndhF , 2002, International Journal of Plant Sciences.

[46]  Daniel G Peterson,et al.  Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. , 2002, Genome research.

[47]  M. Feldman,et al.  Allopolyploidy-Induced Rapid Genome Evolution in the Wheat (Aegilops–Triticum) Group , 2001, The Plant Cell Online.

[48]  A. Paterson,et al.  Construction of plant bacterial artificial chromosome (BAC) libraries: an illustrated guide. , 2000 .

[49]  M. Chase,et al.  PHYLOGENETIC ANALYSIS OF DNA C-VALUES PROVIDES EVIDENCE FOR A SMALL ANCESTRAL GENOME SIZE IN FLOWERING PLANTS , 1998 .

[50]  L. Poggio,et al.  Genome Size and Environmental Correlations in Maize (Zea mays ssp. mays, Poaceae) , 1998 .

[51]  Phillip SanMiguel,et al.  Evidence that a Recent Increase in Maize Genome Size was Caused by the Massive Amplification of Intergene Retrotransposons , 1998 .

[52]  M. Grandbastien Activation of plant retrotransposons under stress conditions , 1998 .

[53]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[54]  J. Bennetzen,et al.  Do Plants Have a One-Way Ticket to Genomic Obesity? , 1997, The Plant cell.

[55]  S. Wessler,et al.  Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[56]  S. Brenner,et al.  Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome , 1993, Nature.

[57]  D. Laurie,et al.  Nuclear DNA content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variation , 1985, Heredity.

[58]  M. Bennett,et al.  Nuclear DNA content and minimum generation time in herbaceous plants , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[59]  V. Pande,et al.  Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid , 2022 .