Evolutionary multiobjective optimization

Many real-world search and optimization problems are naturally posed as non-linear programming problems having multiple conflicting objectives. Due to lack of suitable solution techniques, such problems are usually artificially converted into a single-objective problem and solved. The difficulty arises because multi-objective optimization problems give rise to a set of Pareto-optimal solutions, each corresponding to a certain trade-off among the objectives. It then becomes important to find not just one Pareto-optimal solution but as many of them as possible. Classical methods are found to be not efficient because they require repetitive applications to find multiple Pareto-optimal solutions and in some occasions repetitive applications do not guarantee finding distinct Pareto-optimal solutions. The population approach of evolutionary algorithms (EAs) allows an efficient way to find multiple Pareto-optimal solutions simultaneously in a single simulation run. In this tutorial, we shall contrast the differences in philosophies between classical and evolutionary multi-objective methodologies and provide adequate fundamentals needed to understand and use both methodologies in practice. Particularly, major state-of-the-art evolutionary multi-objective optimization (EMO) methodologies will be presented and various related issues such as performance assessment and preference articulation will be discussed. Thereafter, three main application areas of EMO will be discussed with adequate case studies from practice -- (i) applications showing better decision-making abilities through EMO, (ii) applications exploiting the multitude of trade-off solutions of EMO in extracting useful information in a problem, and (iii) applications showing better problem-solving abilities in various other tasks (such as, reducing bloating, solving single-objective constraint handling, and others). Clearly, EAs have a niche in solving multi-objective optimization problems compared to classical methods. This is why EMO methodologies are getting a growing attention in the recent past. Since this is a comparatively new field of research, in this tutorial, a number of future challenges in the research and application of multi-objective optimization will also be discussed. This tutorial is aimed for both novices and users of EMO. Those without any knowledge in EMO will have adequate ideas of the procedures and their importance in computing and problem-solving tasks. Those who have been practicing EMO will also have enough ideas and materials for future research, know state-of-the-art results and techniques, and make a comparative evaluation of their research.

[1]  Nicola Beume,et al.  S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem , 2009, Evolutionary Computation.

[2]  Marco Laumanns,et al.  Multiobjective Groundwater Management Using Evolutionary Algorithms , 2009, IEEE Transactions on Evolutionary Computation.

[3]  Lucas Bradstreet,et al.  A Fast Incremental Hypervolume Algorithm , 2008, IEEE Transactions on Evolutionary Computation.

[4]  Jürgen Branke,et al.  Interactive Multiobjective Evolutionary Algorithms , 2008, Multiobjective Optimization.

[5]  Günter Rudolph,et al.  Parallel Approaches for Multiobjective Optimization , 2008, Multiobjective Optimization.

[6]  Lothar Thiele,et al.  Quality Assessment of Pareto Set Approximations , 2008, Multiobjective Optimization.

[7]  Joshua D. Knowles,et al.  Multiobjectivization by Decomposition of Scalar Cost Functions , 2008, PPSN.

[8]  Tobias Friedrich,et al.  Approximating the volume of unions and intersections of high-dimensional geometric objects , 2008, Comput. Geom..

[9]  Eckart Zitzler,et al.  Pattern identification in pareto-set approximations , 2008, GECCO '08.

[10]  Eckart Zitzler,et al.  Reducing Bloat in GP with Multiple Objectives , 2008, Multiobjective Problem Solving from Nature.

[11]  Kalyanmoy Deb,et al.  Faster Hypervolume-Based Search Using Monte Carlo Sampling , 2008, MCDM.

[12]  António Gaspar-Cunha,et al.  Robustness in multi-objective optimization using evolutionary algorithms , 2008, Comput. Optim. Appl..

[13]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[14]  Frank Neumann,et al.  Do additional objectives make a problem harder? , 2007, GECCO '07.

[15]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[16]  Evan J. Hughes,et al.  Radar Waveform Optimisation as a Many-Objective Application Benchmark , 2007, EMO.

[17]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[18]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[19]  El-Ghazali Talbi,et al.  Using the Multi-Start and Island Models for Parallel Multi-Objective Optimization on the Computational Grid , 2006, 2006 Second IEEE International Conference on e-Science and Grid Computing (e-Science'06).

[20]  Kalyanmoy Deb,et al.  Introducing Robustness in Multi-Objective Optimization , 2006, Evolutionary Computation.

[21]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[22]  Lily Rachmawati,et al.  Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[23]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[24]  Kalyanmoy Deb,et al.  Towards estimating nadir objective vector using evolutionary approaches , 2006, GECCO.

[25]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[26]  Marco Laumanns,et al.  An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method , 2006, Eur. J. Oper. Res..

[27]  Eckart Zitzler,et al.  Dimensionality Reduction in Multiobjective Optimization: The Minimum Objective Subset Problem , 2006, OR.

[28]  Eckart Zitzler,et al.  Handling Uncertainty in Indicator-Based Multiobjective Optimization , 2006 .

[29]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[30]  Frank Neumann,et al.  Minimum spanning trees made easier via multi-objective optimization , 2005, GECCO '05.

[31]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[32]  Tong Heng Lee,et al.  Multiobjective Evolutionary Algorithms and Applications , 2005, Advanced Information and Knowledge Processing.

[33]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[34]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[35]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[36]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[37]  M. Jensen Helper-Objectives: Using Multi-Objective Evolutionary Algorithms for Single-Objective Optimisation , 2004 .

[38]  Bernhard Sendhoff,et al.  On Test Functions for Evolutionary Multi-objective Optimization , 2004, PPSN.

[39]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[40]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[41]  Sean Luke,et al.  Alternative Bloat Control Methods , 2004, GECCO.

[42]  Marco Laumanns,et al.  Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions , 2004, IEEE Transactions on Evolutionary Computation.

[43]  Marco Laumanns,et al.  Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem , 2004, Natural Computing.

[44]  Edwin D. de Jong,et al.  Multi-Objective Methods for Tree Size Control , 2003, Genetic Programming and Evolvable Machines.

[45]  Anikó Ekárt,et al.  Selection Based on the Pareto Nondomination Criterion for Controlling Code Growth in Genetic Programming , 2001, Genetic Programming and Evolvable Machines.

[46]  Mikkel T. Jensen,et al.  Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms , 2003, IEEE Trans. Evol. Comput..

[47]  Robert M. Hubley,et al.  Evolutionary algorithms for the selection of single nucleotide polymorphisms , 2003, BMC Bioinformatics.

[48]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[49]  David W. Corne,et al.  Instance Generators and Test Suites for the Multiobjective Quadratic Assignment Problem , 2003, EMO.

[50]  Daisuke Sasaki,et al.  Visualization and Data Mining of Pareto Solutions Using Self-Organizing Map , 2003, EMO.

[51]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[52]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[53]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[54]  Lothar Thiele,et al.  Chapter 4 – Design Space Exploration of Network Processor Architectures , 2003 .

[55]  Ingo Wegener,et al.  Fitness Landscapes Based on Sorting and Shortest Paths Problems , 2002, PPSN.

[56]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[57]  Andrzej Jaszkiewicz,et al.  On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment , 2002, IEEE Trans. Evol. Comput..

[58]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[59]  Jürgen Teich,et al.  Comparison of data structures for storing Pareto-sets in MOEAs , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[60]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[61]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[62]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[63]  Edwin D. de Jong,et al.  Reducing bloat and promoting diversity using multi-objective methods , 2001 .

[64]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[65]  Lothar Thiele,et al.  Multiobjective genetic programming: reducing bloat using SPEA2 , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[66]  Jürgen Teich,et al.  Pareto-Front Exploration with Uncertain Objectives , 2001, EMO.

[67]  Jonathan A. Wright,et al.  An Infeasibility Objective for Use in Constrained Pareto Optimization , 2001, EMO.

[68]  Evan J. Hughes,et al.  Evolutionary Multi-objective Ranking with Uncertainty and Noise , 2001, EMO.

[69]  Carlos M. Fonseca,et al.  Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.

[70]  Richard A. Watson,et al.  Reducing Local Optima in Single-Objective Problems by Multi-objectivization , 2001, EMO.

[71]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[72]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[73]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[74]  Lothar Thiele,et al.  Conflicting Criteria in Embedded System Design , 2000, IEEE Des. Test Comput..

[75]  C. Coello TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION , 2000 .

[76]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[77]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[78]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[79]  G. Rudolph On a multi-objective evolutionary algorithm and its convergence to the Pareto set , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[80]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[81]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[82]  Neil A. Thacker,et al.  Optimising object recognition parameters using a parallel multiobjective genetic algorithm , 1997 .

[83]  Jongsoo Lee,et al.  Parallel Genetic Algorithm Implementation in Multidisciplinary Rotor Blade Design , 1996 .

[84]  Hisao Ishibuchi,et al.  Multi-objective genetic local search algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[85]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[86]  Francesco Mason,et al.  Genetic Algorithm with Redundancies for the Vehicle Scheduling Problem , 1995 .

[87]  D. Dentcheva,et al.  On several concepts for ɛ-efficiency , 1994 .

[88]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[89]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[90]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[91]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[92]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[93]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[94]  Paolo Serafini,et al.  Some Considerations about Computational Complexity for Multi Objective Combinatorial Problems , 1987 .

[95]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[96]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[97]  W. Habenicht,et al.  Quad Trees, a Datastructure for Discrete Vector Optimization Problems , 1983 .

[98]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .