Deconstructing the latitudinal diversity gradient of North American mammals by nominal order

North American mammals follow a well-established latitudinal diversity gradient in species richness. However, the degree to which species in different mammal clades follow the same latitudinal gradient—and to which each clade contributes to the pattern observed for all mammals remains unknown. Here, we separate the overall mammalian latitudinal diversity gradient by mammal orders and investigate the impact of climate and topography on the distribution of each major mammal clade. We joined an equal-area grid (100 × 100 km cells) of continental North America embedded with environmental variables (n = 10) with mammalian species ranges (n = 753). We used spatial regression models to quantify the relationship between species richness and latitude for all mammals, all mammals excluding select clades, and for each individual subordinate clade (n = 9). We used multiple linear regression and simultaneous autoregressive regression models to determine which environmental variables best explained patterns of species richness for each mammal order. Whereas North American mammals altogether exhibit a strong latitudinal diversity gradient in species richness, most orders deviate from the species richness pattern observed for all mammals and their gradients are weak or entirely absent. Bats (Chiroptera) exhibit the strongest latitudinal gradient—their removal from the pattern for all mammals substantially weakens the total mammalian gradient, more so than when rodents are removed. Environmental variables explain patterns of species richness well for some clades, but poorly for others. The gradient we observe for North American mammals today is likely a combined product of multiple diversification events, dispersals, and climatic and tectonic histories. La riqueza de especies de mamíferos en Norte América sigue un gradiente latitudinal de diversidad bien establecido. Sin embargo, se desconoce si la riqueza de especies entre clados de mamíferos sigue el mismo patrón latitudinal. También se desconoce la contribución individuales de los clados al patrón observado de la riqueza de especies. En este artículo, se separa el gradiente de diversidad latitudinal general de mamíferos por órdenes de mamíferos y se investiga el impacto del clima y la topografía en la distribución de cada clado principal de mamíferos. La riqueza de especies de mamíferos se obtuvo mediante la sobreposición de sus áreas de distribución (n = 753) sobre una cuadricula (celdas de 100 × 100 km) integrada con variables ambientales (n = 10) de América del Norte continental. Se utilizan modelos de regresión espacial para cuantificar la relación entre la riqueza de especies y la latitud para todos los mamíferos. Este procedimiento se repitió para todos los mamíferos excluyendo clados seleccionados y para cada clado subordinado individual (n = 9). Se utilizaron modelos de regresión lineal múltiple y modelos de regresión autorregresivos para determinar que combinación de variables ambientales explicaban mejor los patrones de riqueza para cada orden de mamíferos. Mientras que los mamíferos de América del Norte en conjunto exhiben un fuerte gradiente de diversidad latitudinal en la riqueza de especies, la mayoría de los órdenes se desvían del patrón de riqueza de especies observado para todos los mamíferos y sus gradientes son débiles o están completamente ausentes. Nuestros resultados muestran que mientras los mamíferos de América del Norte en su conjunto exhiben un fuerte gradiente de diversidad latitudinal en la riqueza de especies, la mayoría de los órdenes se desvían del patrón de riqueza observado para todos los mamíferos y sus gradientes son débiles o están completamente ausentes. Los murciélagos (orden Chiroptera) exhiben el gradiente latitudinal más fuerte: su remoción del patron debilita substancialmente el gradiente latitudinal observado de riqueza de todos los mamíferos, es más acentuada que cuando se remueve el orden de roedores. Las variables ambientales explican bien los patrones de riqueza de especies para algunos clados, pero debilmente para otros. El gradiente observado en la actualidad para los mamíferos de América del Norte es probablemente el resultado combinado de múltiples eventos de diversificación, dispersiones e historias climáticas y tectónicas.

[1]  Rajesh Kumar,et al.  What changed in the cyber-security after COVID-19? , 2022, Computers & Security.

[2]  Bryan C. Carstens,et al.  Analysis of biodiversity data suggests that mammal species are hidden in predictable places , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Mary T. Holden,et al.  Expert range maps of global mammal distributions harmonised to three taxonomic authorities , 2022, Journal of biogeography.

[4]  Giovani Hernández-Canchola,et al.  Mitochondrial DNA and other lines of evidence clarify species diversity in the Peromyscus truei species group (Cricetidae: Neotominae) , 2022, Mammalia.

[5]  C. Graham,et al.  Spatial variation in direct and indirect effects of climate and productivity on species richness of terrestrial tetrapods , 2021, Global ecology and biogeography : a journal of macroecology.

[6]  Roger Bivand,et al.  A Review of Software for Spatial Econometrics in R , 2021 .

[7]  P. Allison,et al.  Spatial sampling heterogeneity limits the detectability of deep time latitudinal biodiversity gradients , 2021, Proceedings of the Royal Society B.

[8]  R. Peña‐Santiago Ecology and biogeography , 2020, Morphology and Bionomics of Dorylaims (Nematoda, Dorylaimida).

[9]  D. Fox,et al.  Latitudinal and environmental patterns of species richness in lizards and snakes across continental North America , 2020, Journal of Biogeography.

[10]  Z. Czenze,et al.  Body mass affects short‐term heterothermy in Neotropical bats , 2020, Biotropica.

[11]  M. Zelditch,et al.  Multi‐dimensional biodiversity hotspots and the future of taxonomic, ecological and phylogenetic diversity: A case study of North American rodents , 2020, Global Ecology and Biogeography.

[12]  A. Bahadori,et al.  Geodynamic evolution of southwestern North America since the Late Eocene , 2019, Nature Communications.

[13]  S. K. Lyons,et al.  Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction , 2019, Science.

[14]  C. Graham,et al.  Environmental factors explain the spatial mismatches between species richness and phylogenetic diversity of terrestrial mammals , 2019, Global Ecology and Biogeography.

[15]  R. Julliard,et al.  Species splitting increases estimates of evolutionary history at risk , 2019, Biological Conservation.

[16]  J. Alroy Latitudinal gradients in the ecology of New World bats , 2019, Global Ecology and Biogeography.

[17]  R. J. Rowe,et al.  Gradients of mammalian biodiversity through space and time , 2019, Journal of Mammalogy.

[18]  Y. Chun,et al.  Residual spatial autocorrelation in macroecological and biogeographical modeling: a review , 2019, Journal of Ecology and Environment.

[19]  Susanne A. Fritz,et al.  The Latitudinal Diversity Gradient: Novel Understanding through Mechanistic Eco-evolutionary Models. , 2019, Trends in ecology & evolution.

[20]  F. Perini,et al.  Biogeography and early emergence of the genus Didelphis (Didelphimorphia, Mammalia) , 2018, Zoologica Scripta.

[21]  P. Peres‐Neto,et al.  Latitudinal‐diversity gradients can be shaped by biotic processes: new insights from an eco‐evolutionary model , 2018, Ecography.

[22]  N. Giannini,et al.  Trophic structure of frugivorous bats in the Neotropics: emergent patterns in evolutionary history , 2018 .

[23]  S. Laffan,et al.  Phylogenetic diversity, types of endemism and the evolutionary history of New World bats , 2018 .

[24]  Connor J. Burgin,et al.  How many species of mammals are there? , 2018, Journal of Mammalogy.

[25]  C. Douady,et al.  Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants , 2018 .

[26]  R. Waide,et al.  Taxonomic decomposition of the latitudinal gradient in species diversity of North American floras , 2018 .

[27]  Erin E. Peterson,et al.  Spatial autoregressive models for statistical inference from ecological data , 2018 .

[28]  B. Arbogast,et al.  Genetic data reveal a cryptic species of New World flying squirrel: Glaucomys oregonensis , 2017, Journal of Mammalogy.

[29]  W. Ripple,et al.  Large‐scale responses of herbivore prey to canid predators and primary productivity , 2017 .

[30]  W. Cornwell,et al.  Plants show more flesh in the tropics: variation in fruit type along latitudinal and climatic gradients , 2017 .

[31]  Catherine Badgley,et al.  Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives. , 2017, Trends in ecology & evolution.

[32]  M. Hofreiter,et al.  Inactivation of thermogenic UCP1 as a historical contingency in multiple placental mammal clades , 2016, Science Advances.

[33]  Pascal O. Title,et al.  ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling , 2016, bioRxiv.

[34]  C. Graham,et al.  Species and functional diversity accumulate differently in mammals , 2016 .

[35]  Mark P. Simmons,et al.  Cryptic species diversity reveals biogeographic support for the ‘mountain passes are higher in the tropics’ hypothesis , 2016, Proceedings of the Royal Society B: Biological Sciences.

[36]  J. Marcot,et al.  Late Cenozoic onset of the latitudinal diversity gradient of North American mammals , 2016, Proceedings of the National Academy of Sciences.

[37]  L. Dávalos,et al.  Bats (Chiroptera: Noctilionoidea) Challenge a Recent Origin of Extant Neotropical Diversity. , 2016, Systematic biology.

[38]  Aaron R. Wood,et al.  First North American fossil monkey and early Miocene tropical biotic interchange , 2016, Nature.

[39]  Bruce D. Patterson,et al.  Patterns of Species Richness and Turnover for the South American Rodent Fauna , 2016, PloS one.

[40]  P. Fine Ecological and Evolutionary Drivers of Geographic Variation in Species Diversity , 2015 .

[41]  Champak R. Beeravolu,et al.  Dispersal is a major driver of the latitudinal diversity gradient of Carnivora , 2015 .

[42]  N. Moraes-Barros,et al.  Genetic Diversity in Xenarthra and Its Relevance to Patterns of Neotropical Biodiversity , 2015 .

[43]  R. X. Camargo,et al.  The weakness of evidence supporting tropical niche conservatism as a main driver of current richness-temperature gradients: Niche conservatism and gradients in species richness , 2015 .

[44]  J. Eronen,et al.  Mountain uplift explains differences in Palaeogene patterns of mammalian evolution and extinction between North America and Europe , 2015, Proceedings of the Royal Society B: Biological Sciences.

[45]  D. Rabosky,et al.  Speciation dynamics during the global radiation of extant bats , 2015, Evolution; international journal of organic evolution.

[46]  D. Diefenbach,et al.  Population Density Influences Dispersal in Female White-Tailed Deer , 2015 .

[47]  P. Chakrabarty,et al.  Biological evidence supports an early and complex emergence of the Isthmus of Panama , 2015, Proceedings of the National Academy of Sciences.

[48]  C. Jaramillo,et al.  Middle Miocene closure of the Central American Seaway , 2015, Science.

[49]  J. Finarelli,et al.  Great Basin mammal diversity in relation to landscape history , 2014 .

[50]  F. Villalobos,et al.  Latitudinal gradients of genus richness and endemism and the diversification of New World bats , 2014 .

[51]  S. Gouveia,et al.  Forest structure drives global diversity of primates. , 2014, The Journal of animal ecology.

[52]  Lynn W. Robbins,et al.  Range expansion and distributional limits of the nine‐banded armadillo in the United States: an update of Taulman & Robbins (1996) , 2014 .

[53]  Mark S Boyce,et al.  Habitat selection during ungulate dispersal and exploratory movement at broad and fine scale with implications for conservation management , 2014, Movement Ecology.

[54]  A. Georges,et al.  Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room? , 2014, Systematic biology.

[55]  Brody Sandel,et al.  Macroecological Evidence for Competitive Regional-Scale Interactions between the Two Major Clades of Mammal Carnivores (Feliformia and Caniformia) , 2014, PloS one.

[56]  F. K. Barker,et al.  THE EARLY DIVERSIFICATION HISTORY OF DIDELPHID MARSUPIALS: A WINDOW INTO SOUTH AMERICA'S “SPLENDID ISOLATION” , 2014, Evolution; international journal of organic evolution.

[57]  T. Jezkova,et al.  Cryptic divergence and revised species taxonomy within the Great Basin pocket mouse, Perognathus parvus (Peale, 1848), species group , 2014 .

[58]  F. Jiguet,et al.  Faster Speciation and Reduced Extinction in the Tropics Contribute to the Mammalian Latitudinal Diversity Gradient , 2014, PLoS biology.

[59]  Bruce D. Patterson,et al.  Diversification of the yellow-shouldered bats, genus Sturnira (Chiroptera, Phyllostomidae), in the New World tropics. , 2013, Molecular phylogenetics and evolution.

[60]  J. M. Palmeirim,et al.  Latitudinal Diversity Gradients in New World Bats: Are They a Consequence of Niche Conservatism? , 2013, PloS one.

[61]  J. Finarelli,et al.  Diversity dynamics of mammals in relation to tectonic and climatic history: comparison of three Neogene records from North America , 2013, Paleobiology.

[62]  L. Navarro,et al.  The role of frugivory in the diversification of bats in the Neotropics , 2012 .

[63]  Sharlene E. Santana,et al.  Morphological innovation, diversification and invasion of a new adaptive zone , 2012, Proceedings of the Royal Society B: Biological Sciences.

[64]  W. Ripple,et al.  Large predators limit herbivore densities in northern forest ecosystems , 2012, European Journal of Wildlife Research.

[65]  B. Riddle,et al.  Landscape and climatic effects on the evolutionary diversification of the Perognathus fasciatus species group , 2011 .

[66]  C. Badgley,et al.  Flat latitudinal gradient in Paleocene mammal richness suggests decoupling of climate and biodiversity , 2011 .

[67]  J. Ragle,et al.  IUCN Red List of Threatened Species , 2010 .

[68]  J. Finarelli,et al.  Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate , 2010, Proceedings of the Royal Society B: Biological Sciences.

[69]  M. Woodburne The Great American Biotic Interchange: Dispersals, Tectonics, Climate, Sea Level and Holding Pens , 2010, Journal of Mammalian Evolution.

[70]  B. Riddle,et al.  Diversification of the Perognathus flavus species group in emerging arid grasslands of western North America , 2010 .

[71]  Ellen I. Damschen,et al.  Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals , 2010, Proceedings of the Royal Society B: Biological Sciences.

[72]  F. Villalobos,et al.  The diversity field of New World leaf-nosed bats (Phyllostomidae) , 2010 .

[73]  James H Brown,et al.  A latitudinal diversity gradient in planktonic marine bacteria , 2008, Proceedings of the National Academy of Sciences.

[74]  R. G. Davies,et al.  Methods to account for spatial autocorrelation in the analysis of species distributional data : a review , 2007 .

[75]  W. D. Kissling,et al.  Spatial autocorrelation and the selection of simultaneous autoregressive models , 2007 .

[76]  David J. Lohman,et al.  Cryptic species as a window on diversity and conservation. , 2007, Trends in ecology & evolution.

[77]  J. Jenks,et al.  Dispersal of Yearling Pronghorns in Western South Dakota , 2007 .

[78]  W. Dickinson Geotectonic evolution of the Great Basin , 2006 .

[79]  D. Grayson The Late Quaternary biogeographic histories of some Great Basin mammals (western USA) , 2006 .

[80]  R. Stevens Historical processes enhance patterns of diversity along latitudinal gradients , 2006, Proceedings of the Royal Society B: Biological Sciences.

[81]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[82]  P. Rodríguez,et al.  Continental and regional ranges of North American mammals: Rapoport's rule in real and null worlds , 2005 .

[83]  Richard Field,et al.  Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness , 2004 .

[84]  P. Rodríguez,et al.  Beta diversity and latitude in North American mammals: testing the hypothesis of covariation , 2004 .

[85]  James Mallet,et al.  Taxonomic inflation: its influence on macroecology and conservation. , 2004, Trends in ecology & evolution.

[86]  M. Tognelli,et al.  Analysis of determinants of mammalian species richness in South America using spatial autoregressive models , 2004 .

[87]  Kurt H. Riitters,et al.  Topographic controls on the regional‐scale biodiversity of the south‐western USA , 2004 .

[88]  R. Stevens Untangling latitudinal richness gradients at higher taxonomic levels: familial perspectives on the diversity of New World bat communities , 2004 .

[89]  M. Wall A close look at the spatial structure implied by the CAR and SAR models , 2004 .

[90]  Helmut Hillebrand,et al.  On the Generality of the Latitudinal Diversity Gradient , 2004, The American Naturalist.

[91]  Richard Field,et al.  ENERGY, WATER, AND BROAD‐SCALE GEOGRAPHIC PATTERNS OF SPECIES RICHNESS , 2003 .

[92]  Dawn M. Kaufman,et al.  LATITUDINAL GRADIENTS OF BIODIVERSITY:Pattern,Process,Scale,and Synthesis , 2003 .

[93]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[94]  J. Diniz‐Filho,et al.  Spatial autocorrelation and red herrings in geographical ecology , 2003 .

[95]  T. Simons,et al.  Spatial autocorrelation and autoregressive models in ecology , 2002 .

[96]  W. Dickinson The Basin and Range Province as a Composite Extensional Domain , 2002 .

[97]  David L. Fox,et al.  Ecological biogeography of North American mammals: species density and ecological structure in relation to environmental gradients , 2000 .

[98]  Bruce D. Patterson,et al.  Patterns and trends in the discovery of new Neotropical mammals , 2000 .

[99]  J. Crame Evolution of taxonomic diversity gradients in the marine realm: evidence from the composition of Recent bivalve faunas , 2000, Paleobiology.

[100]  Dawn M. Kaufman,et al.  Latitudinal patterns of mammalian species richness in the New World: the effects of sampling method and faunal group , 1998 .

[101]  K. Gaston,et al.  A sideways look at patterns in species richness, or why there are so few species outside the tropics , 1996 .

[102]  H. Gregory McDonald,et al.  Spatial Response of Mammals to Late Quaternary Environmental Fluctuations , 1996, Science.

[103]  Dawn M. Kaufman Diversity of New World Mammals: Universality of the Latitudinal Gradients of Species and Bauplans , 1995 .

[104]  M. Rex,et al.  Global-scale latitudinal patterns of species diversity in the deep-sea benthos , 1993, Nature.

[105]  K. Rohde Latitudinal gradients in species diversity: the search for the primary cause , 1992 .

[106]  James H. Brown,et al.  Spatial Scaling of Species Composition: Body Masses of North American Land Mammals , 1991, The American Naturalist.

[107]  A. Stuart MAMMALIAN EXTINCTIONS IN THE LATE PLEISTOCENE OF NORTHERN EURASIA AND NORTH AMERICA , 1991, Biological reviews of the Cambridge Philosophical Society.

[108]  D. Grayson Late Pleistocene mammalian extinctions in North America: Taxonomy, chronology, and explanations , 1991 .

[109]  R. May,et al.  Ecological Aspects of the Geographical Distribution and Diversity of Mammalian Species , 1991, The American Naturalist.

[110]  D. Currie Energy and Large-Scale Patterns of Animal- and Plant-Species Richness , 1991, The American Naturalist.

[111]  M. Willig,et al.  Bat species density gradients in the New World: a statistical assessment , 1989 .

[112]  David J. Currie,et al.  Large-scale biogeographical patterns of species richness of trees , 1987, Nature.

[113]  D. Raup,et al.  Mammalian Evolution and the Great American Interchange , 1982, Science.

[114]  J. T. Turner Latitudinal patterns of calanoid and cyclopoid copepod diversity in estuarine waters of eastern North America , 1981 .

[115]  K. Flessa Area, Continental Drift and Mammalian Diversity , 1975, Paleobiology.

[116]  John W. Wilson ANALYTICAL ZOOGEOGRAPHY OF NORTH AMERICAN MAMMALS , 1974, Evolution; international journal of organic evolution.

[117]  E. Pianka Latitudinal Gradients in Species Diversity: A Review of Concepts , 1966, The American Naturalist.

[118]  R. Blackwelder Species Density of North American Recent Mammals , 1964 .

[119]  Spatial Analysis , 2017, Encyclopedia of GIS.

[120]  A. Rosenberger,et al.  Modeling lineage and phenotypic diversification in the New World monkey (Platyrrhini, Primates) radiation. , 2015, Molecular phylogenetics and evolution.

[121]  P. Upchurch,et al.  The latitudinal biodiversity gradient through deep time. , 2014, Trends in ecology & evolution.

[122]  P. Scull,et al.  Spatial analysis of species richness of shrews (Soricomorpha: Soricidae) in North America north of Mexico , 2010, Acta Theriologica.

[123]  C. Badgley,et al.  The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America , 2009 .

[124]  B. Lim Review of the Origins and Biogeography of Bats in South America , 2009 .

[125]  W. Porter,et al.  Testing a mechanistic explanation for the latitudinal gradient in mammalian species richness across North America , 2006 .

[126]  Alan J. Miller,et al.  leaps: Regression Subset Selection. , 2004 .

[127]  Brian D. Ripley,et al.  Modern applied statistics with S, 4th Edition , 2002, Statistics and computing.

[128]  J. Alistair Crame Evolution of taxonomic diversity gradients in the marine realm: evidence from the composition of Recent bivalve faunas , 2000 .

[129]  Jeremy T. Kerr,et al.  Habitat heterogeneity as a determinant of mammal species richness in high-energy regions , 1997, Nature.