A decomposition theory for matroids. II. Minimal violation matroids

Abstract Two decomposition theorems of Part I are utilized to characterize minimal violation matroids of matroid properties that possess certain composition and extension properties. Graphicness, planarity, and regularity have all or almost all of the desired composition and extension properties, and rather simple arguments produce the well-known minimal violation matroids.

[1]  L. Lofgren,et al.  Irredundant and redundant Boolean branch-networks , 1959 .

[2]  Klaus Truemper,et al.  On the Efficiency of Representability Tests for Matroids , 1982, Eur. J. Comb..

[3]  W. T. Tutte A homotopy theorem for matroids. II , 1958 .

[4]  H. Whitney 2-Isomorphic Graphs , 1933 .

[5]  Robert E. Bixby,et al.  On Reid's characterization of the ternary matroids , 1979, J. Comb. Theory, Ser. B.

[6]  Klaus Truemper,et al.  Alpha-balanced graphs and matrices and GF(3)-representability of matroids , 1982, J. Comb. Theory, Ser. B.

[7]  W. T. Tutte Matroids and graphs , 1959 .

[8]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[9]  Klaus Truemper,et al.  On Whitney's 2-isomorphism theorem for graphs , 1980, J. Graph Theory.

[10]  P. Seymour On Tutte's Characterization of Graphic Matroids , 1980 .

[11]  Paul D. Seymour,et al.  Matroid representation over GF(3) , 1979, J. Comb. Theory, Ser. B.

[12]  Lars Löfgren Irredundant and redundant Boolean branch-networks , 1959, IRE Trans. Inf. Theory.

[13]  Klaus Truemper,et al.  A decomposition theory for matroids. I. General results , 1985, J. Comb. Theory, Ser. B.

[14]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[15]  Klaus Truemper,et al.  Partial Matroid Representations , 1984, Eur. J. Comb..

[16]  Paul D. Seymour,et al.  Decomposition of regular matroids , 1980, J. Comb. Theory, Ser. B.

[17]  P. Camion Characterization of totally unimodular matrices , 1965 .

[18]  Carsten Thomassen,et al.  Planarity and duality of finite and infinite graphs , 1980, J. Comb. Theory B.