Deep learning for dehazing: Benchmark and analysis
暂无分享,去创建一个
We compare a recent dehazing method based on deep learning , Dehazenet, with traditional state-of-the-art approach, on benchmark data with reference. Dehazenet estimates the depth map from a single color image, which is used to inverse the Koschmieder model of imaging in the presence of haze. In this sense, the solution is still attached to the Koschmieder model. We demonstrate that this method exhibits the same limitation than other inversions of this imaging model.