MDCC: multi-data center consistency

Replicating data across multiple data centers allows using data closer to the client, reducing latency for applications, and increases the availability in the event of a data center failure. MDCC (Multi-Data Center Consistency) is an optimistic commit protocol for geo-replicated transactions, that does not require a master or static partitioning, and is strongly consistent at a cost similar to eventually consistent protocols. MDCC takes advantage of Generalized Paxos for transaction processing and exploits commutative updates with value constraints in a quorum-based system. Our experiments show that MDCC outperforms existing synchronous transactional replication protocols, such as Megastore, by requiring only a single message round-trip in the normal operational case independent of the master-location and by scaling linearly with the number of machines as long as transaction conflict rates permit.

[1]  Leslie Lamport,et al.  The part-time parliament , 1998, TOCS.

[2]  Leslie Lamport,et al.  Consensus on transaction commit , 2004, TODS.

[3]  Gustavo Alonso,et al.  Processing transactions over optimistic atomic broadcast protocols , 1999, Proceedings. 19th IEEE International Conference on Distributed Computing Systems (Cat. No.99CB37003).

[4]  Gottfried Vossen,et al.  Transactional Information Systems: Theory, Algorithms, and the Practice of Concurrency Control and Recovery , 2002 .

[5]  Leslie Lamport,et al.  Fast Paxos , 2006, Distributed Computing.

[6]  Victor Shoup,et al.  Secure and Efficient Asynchronous Broadcast Protocols , 2001, CRYPTO.

[7]  Marc Shapiro,et al.  Non-Monotonic Snapshot Isolation , 2013, ArXiv.

[8]  Steve Harrison,et al.  Boosting system performance with optimistic distributed protocols , 2001 .

[9]  Hector Garcia-Molina,et al.  The demarcation protocol: A technique for maintaining constraints in distributed database systems , 1994, The VLDB Journal.

[10]  Tim Kraska,et al.  Building a database on S3 , 2008, SIGMOD Conference.

[11]  Patrick E. O'Neil,et al.  The Escrow transactional method , 1986, TODS.

[12]  Tim Kraska,et al.  An evaluation of alternative architectures for transaction processing in the cloud , 2010, SIGMOD Conference.

[13]  Seif Haridi,et al.  Atomic Commitment in Transactional DHTs , 2007, CoreGRID.

[14]  Christopher Frost,et al.  Spanner: Google's Globally-Distributed Database , 2012, OSDI.

[15]  Leslie Lamport,et al.  Generalized Consensus and Paxos , 2005 .

[16]  Tim Kraska,et al.  PIQL: Success-Tolerant Query Processing in the Cloud , 2011, Proc. VLDB Endow..

[17]  Keith Marzullo,et al.  Mencius: Building Efficient Replicated State Machine for WANs , 2008, OSDI.

[18]  Florian Schintke,et al.  Scalaris: reliable transactional p2p key/value store , 2008, ERLANG '08.

[19]  Hans-Arno Jacobsen,et al.  PNUTS: Yahoo!'s hosted data serving platform , 2008, Proc. VLDB Endow..

[20]  Michael K. Reiter,et al.  Fault-scalable Byzantine fault-tolerant services , 2005, SOSP '05.

[21]  Leslie Lamport,et al.  Paxos Made Simple , 2001 .

[22]  Andreas Reuter,et al.  Transaction Processing: Concepts and Techniques , 1992 .

[23]  Michael I. Jordan,et al.  The SCADS Director: Scaling a Distributed Storage System Under Stringent Performance Requirements , 2011, FAST.

[24]  Michael Stonebraker,et al.  H-store: a high-performance, distributed main memory transaction processing system , 2008, Proc. VLDB Endow..

[25]  David A. Patterson,et al.  SCADS: Scale-Independent Storage for Social Computing Applications , 2009, CIDR.

[26]  Marcos K. Aguilera,et al.  Transactional storage for geo-replicated systems , 2011, SOSP.

[27]  Jun Rao,et al.  Using Paxos to Build a Scalable, Consistent, and Highly Available Datastore , 2011, Proc. VLDB Endow..

[28]  Werner Vogels,et al.  Dynamo: amazon's highly available key-value store , 2007, SOSP.

[29]  Dan Dobre,et al.  HP: Hybrid Paxos for WANs , 2010, 2010 European Dependable Computing Conference.

[30]  Divyakant Agrawal,et al.  Serializability, not Serial: Concurrency Control and Availability in Multi-Datacenter Datastores , 2012, Proc. VLDB Endow..

[31]  Marc H. Scholl,et al.  Transactional information systems: theory, algorithms, and the practice of concurrency control and recovery , 2001, SGMD.

[32]  Yawei Li,et al.  Megastore: Providing Scalable, Highly Available Storage for Interactive Services , 2011, CIDR.

[33]  Jim Gray,et al.  A critique of ANSI SQL isolation levels , 1995, SIGMOD '95.

[34]  Michael J. Freedman,et al.  Don't settle for eventual: scalable causal consistency for wide-area storage with COPS , 2011, SOSP.