Self-consistent thermodynamic potential for magnetized QCD matter

Within the two-flavor Nambu--Jona-Lasinio model, we derive a self-consistent thermodynamic potential $\Omega$ for a QCD matter in an external magnetic field $B$. To be consistent with Schwinger's renormalization spirit, counter terms with vacuum quark mass are introduced into $\Omega$ and then the explicit $B$-dependent parts can be regularized in a cutoff-free way. Following that, explicit expressions of gap equation and magnetization can be consistently obtained according to the standard thermodynamic relations. The formalism is able to reproduce the paramagnetic feature of a QCD matter without ambiguity. For more realistic study, a running coupling constant is also adopted to account for the inverse magnetic catalysis effect. It turns out that the running coupling would greatly suppress magnetization at large $B$ and is important to reproduce the temperature enhancement effect to magnetization. The case with finite baryon chemical potential is also explored: no sign of first-order transition is found by varying $B$ for the running coupling and the de Haas-van Alphen oscillation shows up in the small $B$ region.

[1]  H. Ding,et al.  Chiral condensates and screening masses of neutral pseudoscalar mesons in thermomagnetic QCD medium , 2022, Physical Review D.

[2]  M. B. Pinto,et al.  Nambu–Jona-Lasinio SU(3) model constrained by lattice QCD: thermomagnetic effects in the magnetization , 2021, The European Physical Journal A.

[3]  C. P. Hofmann Diamagnetic and paramagnetic phases in low-energy quantum chromodynamics , 2021, Physics Letters B.

[4]  G. Cao Recent progresses on QCD phases in a strong magnetic field: views from Nambu–Jona-Lasinio model , 2021, The European Physical Journal A.

[5]  C. P. Hofmann Thermomagnetic properties of QCD , 2020, 2012.06461.

[6]  M. B. Pinto,et al.  Regularizing thermo and magnetic contributions within nonrenormalizable theories , 2020, Physical Review D.

[7]  Gaoqing Cao,et al.  Charged rho superconductor in the presence of magnetic field and rotation , 2020, The European Physical Journal C.

[8]  Lianyi He,et al.  Rotation induced charged pion condensation in a strong magnetic field: A Nambu–Jona-Lasino model study , 2019, Physical Review D.

[9]  L. Wang,et al.  Competition between magnetic catalysis effect and chiral rotation effect , 2017, 1712.09780.

[10]  Abdel Nasser Tawfik,et al.  SU(3) Polyakov Linear-Sigma Model: Magnetic Properties of QCD Matter in Thermal and Dense Medium , 2017, 1712.03264.

[11]  I. Zahed,et al.  Pion Condensation by Rotation in a Magnetic Field. , 2017, Physical review letters.

[12]  V. A. Miransky,et al.  Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals , 2015, 1503.00732.

[13]  A. Schäfer,et al.  Paramagnetic squeezing of QCD matter. , 2013, Physical review letters.

[14]  V. Kaspi,et al.  THE McGILL MAGNETAR CATALOG , 2013, 1309.4167.

[15]  F. Sanfilippo,et al.  Magnetic susceptibility of strongly interacting matter across the deconfinement transition. , 2013, Physical review letters.

[16]  G. Endrődi QCD equation of state at nonzero magnetic fields in the Hadron Resonance Gas model , 2013, Journal of High Energy Physics.

[17]  A. Schäfer,et al.  Magnetic field-induced gluonic (inverse) catalysis and pressure (an)isotropy in QCD , 2013, Journal of High Energy Physics.

[18]  A. Schäfer,et al.  Magnetic field-induced gluonic (inverse) catalysis and pressure (an)isotropy in QCD , 2013, 1303.1328.

[19]  G. Endrődi QCD equation of state at nonzero magnetic fields in the Hadron Resonance Gas model , 2013, 1301.1307.

[20]  Z. Fodor,et al.  QCD quark condensate in external magnetic fields , 2012, 1206.4205.

[21]  W. Deng,et al.  Event-by-event generation of electromagnetic fields in heavy-ion collisions , 2012, 1201.5108.

[22]  Z. Fodor,et al.  The QCD phase diagram for external magnetic fields , 2011, 1111.4956.

[23]  Giovanni Jona-Lasinio,et al.  Nambu-Jona-Lasinio model , 2010, Scholarpedia.

[24]  V. Toneev,et al.  Estimate of the magnetic field strength in heavy-ion collisions , 2009, 0907.1396.

[25]  D. Ebert,et al.  Nonstandard magnetic oscillations in the Nambu-Jona-Lasinio model , 2001 .

[26]  D. Ebert,et al.  Magnetic oscillations in dense cold quark matter with four fermion interactions , 1999, hep-ph/9905253.

[27]  G. Baym,et al.  Magnetic fields produced by phase transition bubbles in the electroweak phase transition. , 1995, Physical review. D, Particles and fields.

[28]  Rehberg,et al.  Hadronization in the SU(3) Nambu-Jona-Lasinio model. , 1995, Physical review. C, Nuclear physics.

[29]  V. A. Miransky,et al.  Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in 3 + 1 dimensions , 1994, hep-ph/9412257.

[30]  P. Zhuang,et al.  Thermodynamics of a quark - meson plasma in the Nambu-Jona-Lasinio model , 1994 .

[31]  V. A. Miransky,et al.  Catalysis of Dynamical Flavor Symmetry Breaking by a Magnetic Field in 2+1 Dimensions. , 1994, Physical review letters.

[32]  D. Grasso,et al.  Magnetic Fields in the Early Universe , 1994, astro-ph/0009061.

[33]  T. Hatsuda,et al.  QCD phenomenology based on a chiral effective Lagrangian , 1994, hep-ph/9401310.

[34]  C. Thompson,et al.  Neutron star dynamos and the origins of pulsar magnetism , 1993 .

[35]  S. Klevansky The Nambu-Jona-Lasinio model of quantum chromodynamics , 1992 .

[36]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[37]  K. Klimenko Three-dimensional Gross-Neveu model in an external magnetic field. I , 1991 .

[38]  Tanmay Vachaspati,et al.  Magnetic fields from cosmological phase transitions , 1991 .

[39]  Julian Schwinger,et al.  On gauge invariance and vacuum polarization , 1951 .

[40]  W. Naylor,et al.  D ec 2 01 4 Phase diagram of QCD in a magnetic field : A review , 2013 .

[41]  H. Hees,et al.  Statistical Physics , 2004 .

[42]  K. Klimenko Three-dimensional Gross-Neveu model at nonzero temperature and in an external magnetic field , 1992 .

[43]  E. M. Lifshitz,et al.  Statistical physics. Pt.1 , 1969 .