An Optimal-Dimensionality Sampling Scheme on the Sphere With Fast Spherical Harmonic Transforms

We develop a sampling scheme on the sphere that permits accurate computation of the spherical harmonic transform and its inverse for signals band-limited at L using only L2 samples. We obtain the optimal number of samples given by the degrees of freedom of the signal in harmonic space. The number of samples required in our scheme is a factor of two or four fewer than existing techniques, which require either 2L2 or 4L2 samples. We note, however, that we do not recover a sampling theorem on the sphere, where spherical harmonic transforms are theoretically exact. Nevertheless, we achieve high accuracy even for very large band-limits. For our optimal-dimensionality sampling scheme, we develop a fast and accurate algorithm to compute the spherical harmonic transform (and inverse), with computational complexity comparable with existing schemes in practice. We conduct numerical experiments to study in detail the stability, accuracy and computational complexity of the proposed transforms. We also highlight the advantages of the proposed sampling scheme and associated transforms in the context of potential applications.

[1]  F. Simons,et al.  Localized spectral analysis on the sphere , 2005 .

[2]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[3]  Moo K. Chung,et al.  Weighted Fourier Series Representation and Its Application to Quantifying the Amount of Gray Matter , 2007, IEEE Transactions on Medical Imaging.

[4]  Michael P. Hobson,et al.  Optimal Filters on the Sphere , 2006, IEEE Transactions on Signal Processing.

[5]  O. V. Verkhodanov,et al.  Gauss - Legendre sky pixelization (GLESP) for CMB maps , 2005 .

[6]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[7]  Robert G. Crittenden,et al.  Exactly azimuthal pixelizations of the sky , 1998 .

[8]  Jean-Philippe Thiran,et al.  Sparse Image Reconstruction on the Sphere: Implications of a New Sampling Theorem , 2012, IEEE Transactions on Image Processing.

[9]  Rachel Ward,et al.  Weighted Eigenfunction Estimates with Applications to Compressed Sensing , 2012, SIAM J. Math. Anal..

[10]  David W. Ritchie,et al.  Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces , 1999, Journal of Computational Chemistry.

[11]  Pascal Audet,et al.  Toward mapping the effective elastic thickness of planetary lithospheres from a spherical wavelet analysis of gravity and topography , 2014 .

[12]  Mark A. Wieczorek,et al.  Spatiospectral Concentration on a Sphere , 2004, SIAM Rev..

[13]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[14]  Yves Wiaux,et al.  A Novel Sampling Theorem on the Sphere , 2011, IEEE Transactions on Signal Processing.

[15]  O. Blanc,et al.  Exact reconstruction with directional wavelets on the sphere , 2007, 0712.3519.

[16]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[17]  Pierre Vandergheynst,et al.  Wavelets on the n-sphere and related manifolds , 1998 .

[18]  Frederik J. Simons,et al.  Minimum-Variance Multitaper Spectral Estimation on the Sphere , 2007, 1306.3254.

[19]  Michael P. Hobson,et al.  Fast Directional Continuous Spherical Wavelet Transform Algorithms , 2005, IEEE Transactions on Signal Processing.

[20]  Kevin M. Huffenberger,et al.  FAST AND EXACT SPIN-s SPHERICAL HARMONIC TRANSFORMS , 2010, 1007.3514.

[21]  Rodney A. Kennedy,et al.  Commutative Anisotropic Convolution on the 2-Sphere , 2012, IEEE Transactions on Signal Processing.

[22]  T. Risbo Fourier transform summation of Legendre series and D-functions , 1996 .

[23]  B. T. Thomas Yeo,et al.  On the Construction of Invertible Filter Banks on the 2-Sphere , 2008, IEEE Transactions on Image Processing.

[24]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[25]  D. Healy,et al.  Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .

[26]  Xiaojun Chen,et al.  Well Conditioned Spherical Designs for Integration and Interpolation on the Two-Sphere , 2010, SIAM J. Numer. Anal..

[27]  Dag Sverre Seljebotn,et al.  Libsharp – spherical harmonic transforms revisited , 2013, 1303.4945.

[28]  Pat Hanrahan,et al.  Triple product wavelet integrals for all-frequency relighting , 2004, ACM Trans. Graph..

[29]  Laurent Jacques,et al.  Fast spin ±2 spherical harmonics transforms and application in cosmology , 2007, J. Comput. Phys..

[30]  Rodney A. Kennedy,et al.  On High-Resolution Head-Related Transfer Function Measurements: An Efficient Sampling Scheme , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[31]  P. Baldi,et al.  Spherical Needlets for CMB Data Analysis , 2007, 0707.0844.

[32]  Belgium,et al.  Correspondence principle between spherical and euclidean wavelets , 2005, astro-ph/0502486.

[33]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[34]  Paolo Baldi,et al.  Spherical needlets for cosmic microwave background data analysis , 2008 .

[35]  Martin J. Mohlenkamp A fast transform for spherical harmonics , 1997 .

[36]  Michael P. Hobson,et al.  A directional continuous wavelet transform on the sphere , 2006, ArXiv.

[37]  D. Rockmore,et al.  FFTs on the Rotation Group , 2008 .

[38]  Sean S. B. Moore,et al.  FFTs for the 2-Sphere-Improvements and Variations , 1996 .

[39]  Salman Durrani,et al.  On the construction of low-pass filters on the unit sphere , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[40]  M. Halpern,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP *) OBSERVATIONS: SKY MAPS, SYSTEMATIC ERRORS, AND BASIC RESULTS , 2011 .

[41]  Jean-Luc Starck,et al.  Wavelets, ridgelets and curvelets on the sphere , 2006 .

[42]  Ian H. Sloan,et al.  A variational characterisation of spherical designs , 2009, J. Approx. Theory.

[43]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[44]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[45]  Jason D. McEwen,et al.  Fast, exact (but unstable) spin spherical harmonic transforms , 2008, ArXiv.

[46]  Pascal Audet,et al.  Directional wavelet analysis on the sphere: Application to gravity and topography of the terrestrial planets , 2011 .

[47]  W. Shukowsky,et al.  A quadrature formula over the sphere with application to high resolution spherical harmonic analysis , 1986 .

[48]  R. Duraiswami,et al.  Insights into head-related transfer function: Spatial dimensionality and continuous representation. , 2010, The Journal of the Acoustical Society of America.

[49]  H. Rauhut,et al.  Sparse recovery for spherical harmonic expansions , 2011, 1102.4097.

[50]  R. Kennedy,et al.  Hilbert Space Methods in Signal Processing , 2013 .

[51]  J. A. Rod Blais,et al.  Spherical Harmonic Transforms Using Quadratures and Least Squares , 2006, International Conference on Computational Science.

[52]  Jason D. McEwen,et al.  Ieee Transactions on Signal Processing 1 Exact Wavelets on the Ball , 2022 .

[53]  Rodney A. Kennedy,et al.  On azimuthally symmetric 2-sphere convolution , 2011, Digit. Signal Process..

[54]  Eiichi Bannai,et al.  A survey on spherical designs and algebraic combinatorics on spheres , 2009, Eur. J. Comb..

[55]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[56]  Rodney A. Kennedy,et al.  Introducing Space into MIMO Capacity Calculations , 2003, Telecommun. Syst..

[57]  N. Sneeuw Global spherical harmonic analysis by least‐squares and numerical quadrature methods in historical perspective , 1994 .

[58]  Xiaojun Chen,et al.  Computational existence proofs for spherical t-designs , 2011, Numerische Mathematik.