Computing with Truly Asynchronous Threshold Logic Networks

Abstract We present simulation mechanisms by which any network of threshold logic units with either symmetric or asymmetric interunit connections (i.e. a symmetric or asymmetric “Hopfield net”) can be simulated on a network of the same type, but without any a priori constraints on the order of updates of the units. Together with earlier constructions, the results show that the truly asynchronous network model is computationally equivalent to the seemingly more powerful models with either ordered sequential or fully parallel updates.

[1]  Maurice Tchuente Sequential Simulation of Parallel Iterations and Applications , 1986, Theor. Comput. Sci..

[2]  Eric Goles Ch.,et al.  Comportement periodique des fonctions a seuil binaires et applications , 1981, Discret. Appl. Math..

[3]  Eric Goles Ch.,et al.  The Convergence of Symmetric Threshold Automata , 1981, Inf. Control..

[4]  K. Siu,et al.  Theoretical Advances in Neural Computation and Learning , 1994, Springer US.

[5]  Hava T. Siegelmann,et al.  Analog computation via neural networks , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[6]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Yves Robert,et al.  Automata networks in computer science : theory and applications , 1987 .

[8]  Jirí Wiedermann,et al.  Complexity Issues in Discrete Neurocomputing , 1990, IMYCS.

[9]  Eric Goles Ch.,et al.  Exponential Transient Classes of Symmetric Neural Networks for Synchronous and Sequential Updating , 1989, Complex Syst..

[10]  James A. Anderson,et al.  Neurocomputing: Foundations of Research , 1988 .

[11]  Pekka Orponen,et al.  On the Computational Power of Discrete Hopfield Nets , 1993, ICALP.

[12]  Pekka Orponen,et al.  Complexity Issues in Discrete Hopfield Networks , 1994 .

[13]  Eric Goles,et al.  Neural and automata networks , 1990 .

[14]  Eric Goles Ch.,et al.  Transient length in sequential iteration of threshold functions , 1983, Discret. Appl. Math..

[15]  Mihalis Yannakakis,et al.  Simple Local Search Problems That are Hard to Solve , 1991, SIAM J. Comput..

[16]  Pekka Orponen,et al.  The Computational Power of Discrete Hopfield Nets with Hidden Units , 1996, Neural Computation.

[17]  Ian Parberry,et al.  Circuit complexity and neural networks , 1994 .

[18]  Svatopluk Poljak,et al.  On periodical behaviour in societies with symmetric influences , 1983, Comb..

[19]  Joseph W. Goodman,et al.  A generalized convergence theorem for neural networks , 1988, IEEE Trans. Inf. Theory.

[20]  Ranan B. Banerji Formal techniques in artificial intelligence - a sourcebook , 1990, Studies in computer science and artificial intelligence.

[21]  E. Goles Fixed Point Behavior of Threshold Functions on a Finite Set , 1982 .

[22]  Martin Hasler,et al.  Recursive neural networks for associative memory , 1990, Wiley-interscience series in systems and optimization.

[23]  Eric Goles Ch.,et al.  Decreasing energy functions as a tool for studying threshold networks , 1985, Discret. Appl. Math..

[24]  Pekka Orponen,et al.  Computational complexity of neural networks: a survey , 1994 .

[25]  E. Goles,et al.  Exponential Transient Classes of Symmetric Neural Networks for Synchronous and Sequential Updating , 1989, Complex Syst..