A Probabilistic Approach to Reducing Algebraic Complexity of Delaunay Triangulations

We propose algorithms to compute the Delaunay triangulation of a point set L using only (squared) distance comparisons (i.e., predicates of degree 2). Our approach is based on the witness complex, a weak form of the Delaunay complex introduced by Carlsson and de Silva. We give conditions that ensure that the witness complex and the Delaunay triangulation coincide and we introduce a new perturbation scheme to compute a perturbed set L′ close to L such that the Delaunay triangulation and the witness complex coincide. Our perturbation algorithm is a geometric application of the Moser-Tardos constructive proof of the Lovasz local lemma.

[1]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[2]  Steve Oudot,et al.  Only distances are required to reconstruct submanifolds , 2014, Comput. Geom..

[3]  Gunnar E. Carlsson,et al.  Topological estimation using witness complexes , 2004, PBG.

[4]  Sariel Har-Peled Geometric Approximation Algorithms , 2011 .

[5]  David L. Millman,et al.  Computing planar Voronoi diagrams in double precision: a further example of degree-driven algorithm design , 2010, SoCG '10.

[6]  Jean-Daniel Boissonnat,et al.  The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes , 2012, Algorithmica.

[7]  Jean-Daniel Boissonnat,et al.  A probabilistic approach to reducing the algebraic complexity of computing Delaunay triangulations , 2015, ArXiv.

[8]  Herbert Edelsbrunner,et al.  Weak witnesses for Delaunay triangulations of submanifolds , 2007, Symposium on Solid and Physical Modeling.

[9]  Vin de Silva,et al.  A weak characterisation of the Delaunay triangulation , 2008 .

[10]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[11]  Dan Halperin,et al.  Controlled Perturbation for Certified Geometric Computing with Fixed-Precision Arithmetic , 2010, ICMS.

[12]  Jean-Daniel Boissonnat,et al.  The stability of Delaunay Triangulations , 2013, Int. J. Comput. Geom. Appl..

[13]  Kurt Mehlhorn,et al.  Algorithms for Complex Shapes with Certified Numerics and Topology Controlled Perturbation for Delaunay Triangulations , 2022 .

[14]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.