CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions

CubeSats are positioned to play a key role in Earth Science, wherein multiple copies of the same RADAR instrument are launched in desirable formations, allowing for the measurement of atmospheric processes over a short evolutionary timescale. To achieve this goal, such CubeSats require a high-gain antenna (HGA) that fits in a highly constrained volume. This paper presents a novel mesh deployable Ka-band antenna design that folds in a 1.5 U (10 × 10 × 15 cm3) stowage volume suitable for 6 U (10 × 20 × 30 cm3) class CubeSats. Considering all aspects of the deployable mesh reflector antenna including the feed, detailed simulations and measurements show that 42.6-dBi gain and 52% aperture efficiency is achievable at 35.75 GHz. The mechanical deployment mechanism and associated challenges are also described, as they are critical components of a deployable CubeSat antenna. Both solid and mesh prototype antennas have been developed and measurement results show excellent agreement with simulations.

[1]  J. Ruze Antenna tolerance theory—A review , 1966 .

[2]  P. Ingerson,et al.  The analysis of deployable umbrella parabolic reflectors , 1970 .

[3]  Yahya Rahmat-Samii,et al.  An efficient computational method for characterizing the effects of random surface errors on the average power pattern of reflectors , 1983 .

[4]  A. Roederer,et al.  Unfurlable satellite antennas: A review , 1989 .

[5]  Richard Corkish The use of conical tips to improve the impedance matching of cassegrain subreflectors , 1990 .

[6]  Michael R. Johnson The Galileo high gain antenna deployment anomaly , 1994 .

[7]  M. C. Bailey,et al.  Inflatable Antenna Technology with Preliminary Shuttle Experiment Results and Potential Applications , 1996 .

[8]  Christophe Granet Designing classical offset Cassegrain or Gregorian dual-reflector antennas from combinations of prescribed geometric parameters , 2002 .

[9]  Gunnar Tibert,et al.  Deployable Tensegrity Structures for Space Applications , 2002 .

[10]  T. Takano,et al.  Characteristics of the large deployable antenna on HALCA Satellite in orbit , 2004, IEEE Transactions on Antennas and Propagation.

[11]  J. Huang,et al.  A high efficiency offset-fed X/ka-dual-band reflectarray using thin membranes , 2005, IEEE Transactions on Antennas and Propagation.

[12]  High-Capacity Communications from Martian Distances , 2007 .

[13]  Y. Rahmat-Samii,et al.  A 6-m mesh reflector antenna for SMAP: Modeling the RF performance of a challenging Earth-orbiting instrument , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[14]  Eric Teegarden,et al.  Aeneas -- Colony I Meets Three-Axis Pointing , 2011 .

[15]  Thomas W. Murphey,et al.  Highly Compact Wrapped-Gore Deployable Reflector , 2011 .

[16]  Norman Fitz-Coy,et al.  Configuration of 3U CubeSat Structures for Gain Improvement of S-band Antennas , 2012 .

[17]  R. Hodges,et al.  Ka-band reflectarray for interferometric SAR altimeter , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.

[18]  Sara Seager,et al.  Inflatable antenna for cubesats: Motivation for development and antenna design , 2013 .

[19]  Yahya Rahmat-Samii,et al.  Reflector Antennas , 2014, Encyclopedia of Remote Sensing.

[20]  Yahya Rahmat-Samii,et al.  CubeSat deployable Ka-band reflector antenna for Deep Space missions , 2015, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[21]  Richard E. Hodges,et al.  Novel deployable reflectarray antennas for CubeSat communications , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[22]  R. Hodges,et al.  Ultra-Compact Ka-Band Parabolic Deployable Antenna for RADAR and Interplanetary CubeSats , 2015 .

[23]  Ziad S. Haddad,et al.  Raincube: A proposed constellation of precipitation profiling radars in CubeSat , 2014, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[24]  Luigi Dilillo,et al.  Enabling deep-space CubeSat missions through state-of-the-art radiation-hardened technologies , 2018 .

[25]  J. Encinar,et al.  Reflectarray antennas , 2007, Developments in Antenna Analysis and Design: Volume 2.