A Granular Three Dimensional Multiresolution Transform

We propose a three dimensional multi-resolution scheme to represent volumetric data in resolutions which are powers of two, resolving the rigidity of the commonly used separable Cartesian multi-resolution schemes in 3D that only allow for change of resolution by a power of eight. Through in-depth comparisons with the counterpart resampling solutions on the Cartesian lattice, we demonstrate the superiority of our subsampling scheme. We derive and document the Fourier domain analysis of this representation. Using such an analysis one can obtain ideal and discrete multidimensional filters for this multi-resolution scheme.

[1]  Bernd Hamann,et al.  Multiresolution techniques for interactive texture-based volume visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[2]  Torsten Möller,et al.  Visualization of time-varying volumetric data using differential time-histogram table , 2005, Fourth International Workshop on Volume Graphics, 2005..

[3]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[4]  Klaus Mueller,et al.  A comparison of normal estimation schemes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[5]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[6]  Thierry Blu,et al.  On the multidimensional extension of the quincunx subsampling matrix , 2005, IEEE Signal Processing Letters.

[7]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[8]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[9]  David Salesin,et al.  Fast Rendering of Complex Environments Using a Spatial Hierarchy , 1996, Graphics Interface.

[10]  David S. Ebert,et al.  VolQD: direct volume rendering of multi-million atom quantum dot simulations , 2005, VIS 05. IEEE Visualization, 2005..

[11]  Kwan-Liu Ma,et al.  A fast volume rendering algorithm for time-varying fields using a time-space partitioning (TSP) tree , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[12]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[13]  Ramsay Dyer,et al.  Linear and cubic box splines for the body centered cubic lattice , 2004, IEEE Visualization 2004.

[14]  Bernd Hamann,et al.  Wavelet-Based Multiresolution with , 2003, Computing.

[15]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[16]  Jung Hong Chuang Level of Detail for 3D Graphics , 2002 .

[17]  Jack Snoeyink,et al.  Simplicial subdivisions and sampling artifacts , 2001, Proceedings Visualization, 2001. VIS '01..

[18]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .