On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation.

Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifies the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.

[1]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[2]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[3]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[4]  J. Q. Broughton,et al.  Concurrent Coupling of Length Scales in Solid State Systems , 2000 .

[5]  Albert C. To,et al.  A modification to Hardy's thermomechanical theory that conserves fundamental properties more accurately , 2013 .

[6]  J. Clarke,et al.  Molecular dynamics simulation of an amorphous polymer under tension. 1. Phenomenology , 1991 .

[7]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[8]  A. Ian Murdoch,et al.  A Critique of Atomistic Definitions of the Stress Tensor , 2007 .

[9]  Terry J. Delph Conservation laws for multibody interatomic potentials , 2005 .

[10]  Seth Root,et al.  Continuum predictions from molecular dynamics simulations: Shock waves , 2003 .

[11]  Patrick A. Klein,et al.  Coupled atomistic-continuum simulations using arbitrary overlapping domains , 2006, J. Comput. Phys..

[12]  J W Martin,et al.  Many-body forces in metals and the Brugger elastic constants , 1975 .

[13]  C. J. Kimmer,et al.  Continuum constitutive models from analytical free energies , 2007 .

[14]  Albert C. To,et al.  A modification to Hardy's thermomechanical theory for conserving fundamental properties more accurately: tensile and shear failures in iron , 2013 .

[15]  R. Hardy,et al.  Formulas for determining local properties in molecular‐dynamics simulations: Shock waves , 1982 .

[16]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[17]  Ellad B. Tadmor,et al.  A Unified Interpretation of Stress in Molecular Systems , 2010, 1008.4819.

[18]  Albert C. To,et al.  On the evaluation of Hardy's thermomechanical quantities using ensemble and time averaging , 2013 .

[19]  Reese E. Jones,et al.  A material frame approach for evaluating continuum variables in atomistic simulations , 2008, J. Comput. Phys..

[20]  M. Boyce,et al.  Molecular response of a glassy polymer to active deformation , 2004 .

[21]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[22]  A. I. Murdoch,et al.  THE MOTIVATION OF CONTINUUM CONCEPTS AND RELATIONS FROM DISCRETE CONSIDERATIONS , 1983 .

[23]  Jonathan A. Zimmerman,et al.  Calculation of stress in atomistic simulation , 2004 .

[24]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[25]  J. CLERK-MAXWELL,et al.  O ver de contimiiteit van den gas- en vloeistofiocstand Academisch proefschrift , 1874, Nature.

[26]  Ying Li,et al.  Nanoparticle Geometrical Effect on Structure, Dynamics and Anisotropic Viscosity of Polyethylene Nanocomposites , 2012 .

[27]  Panayiotis Papadopoulos,et al.  On the estimation of spatial averaging volume for determining stress using atomistic methods , 2012 .

[28]  J. Maxwell,et al.  I.—On Reciprocal Figures, Frames, and Diagrams of Forces , 1870, Transactions of the Royal Society of Edinburgh.

[29]  Dick Bedeaux,et al.  Continuum equations of balance via weighted averages of microscopic quantities , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[30]  J. McKechnie,et al.  Methods of generating dense relaxed amorphous polymer samples for use in dynamic simulations , 1992 .

[31]  Dick Bedeaux,et al.  ON THE PHYSICAL INTERPRETATION OF FIELDS IN CONTINUUM MECHANICS , 1993 .

[32]  R. Clausius,et al.  XVI. On a mechanical theorem applicable to heat , 1870 .

[33]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[34]  E. Tadmor,et al.  Stress and heat flux for arbitrary multibody potentials: a unified framework. , 2011, The Journal of chemical physics.

[35]  Youping Chen Local stress and heat flux in atomistic systems involving three-body forces. , 2006, The Journal of chemical physics.

[36]  T Belytschko,et al.  An atomistic J-integral at finite temperature based on Hardy estimates of continuum fields , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  Jeong-Hoon Song,et al.  Large deformation mechanism of glassy polyethylene polymer nanocomposites: Coarse grain molecular dynamics study , 2015 .

[38]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.