Distance covariance in metric spaces

We extend the theory of distance (Brownian) covariance from Euclidean spaces, where it was introduced by Szekely, Rizzo and Bakirov, to general metric spaces. We show that for testing independence, it is necessary and sufficient that the metric space be of strong negative type. In particular, we show that this holds for separable Hilbert spaces, which answers a question of Kosorok. Instead of the manipulations of Fourier transforms used in the original work, we use elementary inequalities for metric spaces and embeddings in Hilbert spaces.

[1]  M. W. Crofton,et al.  VII. On the theory of local probability, applied to straight lines drawn at random in a plane; the methods used being also extended to the proof of certain new theorems in the integral calculus , 1868, Philosophical Transactions of the Royal Society of London.

[2]  I. J. Schoenberg On Certain Metric Spaces Arising From Euclidean Spaces by a Change of Metric and Their Imbedding in Hilbert Space , 1937 .

[3]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[4]  R. Sikorski,et al.  Measures in non-separable metric spaces , 1948 .

[5]  J. Krivine,et al.  Lois stables et espaces $L^p$ , 1967 .

[6]  L. E. Dor,et al.  Potentials and isometric embeddings inL1 , 1976 .

[7]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[8]  W. Linde Uniqueness theorems for measures inLr andC0(Ω) , 1986 .

[9]  Isometric operators in vector-valued LP-spaces , 1987 .

[10]  On potentials of measures in Banach spaces , 1987 .

[11]  I. Kneppo,et al.  Measuring and Testing , 1994 .

[12]  Winfried Just,et al.  Discovering Modern Set Theory , 1995 .

[13]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[14]  Winfried Just,et al.  Discovering Modern Set Theory. II: Set-Theoretic Tools for Every Mathematician , 1997 .

[15]  A Short Proof of Schoenberg's Conjecture on Positive Definite Functions , 1999 .

[16]  Maria L. Rizzo,et al.  A new test for multivariate normality , 2005 .

[17]  Gábor J. Székely,et al.  Hierarchical Clustering via Joint Between-Within Distances: Extending Ward's Minimum Variance Method , 2005, J. Classif..

[18]  Maria L. Rizzo,et al.  Measuring and testing dependence by correlation of distances , 2007, 0803.4101.

[19]  P. Nickolas,et al.  DISTANCE GEOMETRY IN QUASIHYPERMETRIC SPACES. I , 2008, 0809.0740.

[20]  Maria L. Rizzo,et al.  Brownian distance covariance , 2009, 1010.0297.

[21]  Anthony Weston,et al.  Strict p-negative type of a metric space , 2009, 0901.0695.

[22]  Bharath K. Sriperumbudur,et al.  Discussion of: Brownian distance covariance , 2009, 1010.0836.

[23]  Assaf Naor,et al.  L_1 embeddings of the Heisenberg group and fast estimation of graph isoperimetry , 2010, ArXiv.

[24]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[25]  Mark W. Meckes,et al.  Positive definite metric spaces , 2010, 1012.5863.

[26]  Maria L. Rizzo,et al.  Energy statistics: A class of statistics based on distances , 2013 .