The IPAC Image Subtraction and Discovery Pipeline for the Intermediate Palomar Transient Factory

We describe the near real-time transient-source discovery engine for the intermediate Palomar Transient Factory (iPTF), currently in operations at the Infrared Processing and Analysis Center (IPAC), Caltech. We coin this system the IPAC/iPTF Discovery Engine (or IDE). We review the algorithms used for PSF-matching, image subtraction, detection, photometry, and machine-learned (ML) vetting of extracted transient candidates. We also review the performance of our ML classifier. For a limiting signal-to-noise ratio of 4 in relatively unconfused regions, "bogus" candidates from processing artifacts and imperfect image subtractions outnumber real transients by ~ 10:1. This can be considerably higher for image data with inaccurate astrometric and/or PSF-matching solutions. Despite this occasionally high contamination rate, the ML classifier is able to identify real transients with an efficiency (or completeness) of ~ 97% for a maximum tolerable false-positive rate of 1% when classifying raw candidates. All subtraction-image metrics, source features, ML probability-based real-bogus scores, contextual metadata from other surveys, and possible associations with known Solar System objects are stored in a relational database for retrieval by the various science working groups. We review our efforts in mitigating false-positives and our experience in optimizing the overall system in response to the multitude of science projects underway with iPTF.

[1]  Peter E. Nugent,et al.  SLOW-SPEED SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: TWO CHANNELS , 2014, 1405.7409.

[2]  A. J. Connolly,et al.  Regularization techniques for PSF-matching kernels - I. Choice of kernel basis , 2012, 1202.2902.

[3]  E. O. Ofek,et al.  Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era , 2011, 1106.5491.

[4]  K. Kafadar John Tukey and robustness , 2003 .

[5]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[6]  E. Ofek,et al.  PROPER IMAGE SUBTRACTION—OPTIMAL TRANSIENT DETECTION, PHOTOMETRY, AND HYPOTHESIS TESTING , 2016, 1601.02655.

[7]  R. Kotak,et al.  Machine learning for transient discovery in Pan-STARRS1 difference imaging , 2015, 1501.05470.

[8]  Adam D. Myers,et al.  THE SLOAN DIGITAL SKY SURVEY STRIPE 82 IMAGING DATA: DEPTH-OPTIMIZED CO-ADDS OVER 300 deg2 IN FIVE FILTERS , 2014, 1405.7382.

[9]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[10]  R. C. Wolf,et al.  AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY , 2015, 1504.02936.

[11]  Carl J. Grillmair,et al.  AUTOMATED CLASSIFICATION OF PERIODIC VARIABLE STARS DETECTED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER , 2014, 1402.0125.

[12]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[13]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[14]  IoA,et al.  OGLE-IV Real-Time Transient Search , 2014, 1409.1095.

[15]  F. Yuan,et al.  Astronomical Image Subtraction by Cross-Convolution , 2008, 0801.0336.

[16]  Ashutosh Kumar Singh,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2010 .

[17]  M. Sullivan,et al.  The Palomar Transient Factory Photometric Calibration , 2011, 1112.4851.

[18]  E. Rykoff,et al.  The ROTSE‐III Robotic Telescope System , 2002, astro-ph/0210238.

[19]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[20]  E. Greisen,et al.  Representations of celestial coordinates in FITS , 2002, astro-ph/0207413.

[21]  Kesheng Wu,et al.  Implementing the Palomar Transient Factory Real-Time Detection Pipeline in GLADE: Results and Observations , 2014, DNIS.

[22]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[23]  Peter E. Nugent,et al.  AN ACCRETING WHITE DWARF NEAR THE CHANDRASEKHAR LIMIT IN THE ANDROMEDA GALAXY , 2014, 1401.2426.

[24]  M. Wainwright,et al.  Using machine learning for discovery in synoptic survey imaging data , 2012, 1209.3775.

[25]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[26]  Peter E. Nugent,et al.  Exploring the spectral diversity of low-redshift Type Ia supernovae using the Palomar Transient Factory , 2014, 1408.1430.

[27]  Parameter Estimation in Astronomy with Poisson-distributed Data. I. The χγ2 Statistic , 1999, astro-ph/9903093.

[28]  Stuart E. Sale,et al.  Reference image selection for difference imaging analysis , 2014, 1404.6948.

[29]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[30]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[31]  Christopher Bebek,et al.  The Zwicky Transient Facility: Observing System , 2014, Astronomical Telescopes and Instrumentation.

[32]  Carl J. Grillmair,et al.  TRACING THE ORPHAN STREAM TO 55 kpc WITH RR LYRAE STARS , 2013, 1308.0857.

[33]  Adam A. Miller,et al.  ACTIVE LEARNING TO OVERCOME SAMPLE SELECTION BIAS: APPLICATION TO PHOTOMETRIC VARIABLE STAR CLASSIFICATION , 2011, 1106.2832.

[34]  R. Lupton,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[35]  S. Roweis,et al.  ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES , 2009, 0910.2233.

[36]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[37]  David Polishook,et al.  Main-belt comets in the Palomar Transient Factory survey – I. The search for extendedness , 2013, 1305.7176.

[38]  Brian D. Bue,et al.  THE NEEDLE IN THE 100 deg2 HAYSTACK: UNCOVERING AFTERGLOWS OF FERMI GRBs WITH THE PALOMAR TRANSIENT FACTORY , 2015, 1501.00495.

[39]  D. M. Bramich,et al.  A new algorithm for difference image analysis , 2008, 0802.1273.

[40]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[41]  Yi Cao,et al.  Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline , 2016, 1608.01006.

[42]  J. Prieto,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: SEARCH ALGORITHM AND FOLLOW-UP OBSERVATIONS , 2007, 0708.2750.

[43]  E. Bachelet,et al.  Difference image analysis: automatic kernel design using information criteria , 2015, 1512.04655.

[44]  Umaa Rebbapragada,et al.  iPTF SEARCH FOR AN OPTICAL COUNTERPART TO GRAVITATIONAL-WAVE TRANSIENT GW150914 , 2016, 1602.08764.

[45]  Richard Walters,et al.  EVIDENCE FOR AN FU ORIONIS-LIKE OUTBURST FROM A CLASSICAL T TAURI STAR , 2010, 1011.2063.

[46]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[47]  Holger Israel,et al.  Optimising optimal image subtraction , 2007 .