On the performance of cyclic moments-based parameter estimators of amplitude modulated polynomial phase signals

Parameter estimation of amplitude-modulated polynomial phase signals embedded in additive white Gaussian noise is considered. The amplitude modulation is modeled as the sum of a real-valued deterministic function and a zero mean correlated stationary random process. It is shown that cyclic moments-based estimators, previously proposed for parameter estimation of polynomial phase signals modulated by stationary random processes, can be adapted to the more general signal model considered here. The covariance matrices of the cyclic moments-based amplitude and phase parameter estimators are derived for large sample lengths. Using this result, it is shown how the lags can be chosen to minimize the large-sample variances of the cyclic moments-based phase parameter estimators. Comparisons with the Cramer-Rao bounds are performed under the assumption of a Gaussian modulating process. The theoretical derivations are confirmed by simulation results.

[1]  Georgios B. Giannakis,et al.  Asymptotic theory of mixed time averages and k th-order cyclic-moment and cumulant statistics , 1995, IEEE Trans. Inf. Theory.

[2]  Mark R. Morelande,et al.  Model selection of random amplitude polynomial phase signals , 2002, IEEE Trans. Signal Process..

[3]  Messaoud Benidir,et al.  Statistical analysis of polynomial phase signals affected by multiplicative and additive noise , 1999, Signal Process..

[4]  Joseph M. Francos,et al.  Bounds for estimation of multicomponent signals with random amplitude and deterministic phase , 1995, IEEE Trans. Signal Process..

[5]  Mark R. Morelande,et al.  Comparison of cyclic moments-based estimators of the parameters of random amplitude polynomial phase signals , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[6]  Georgios B. Giannakis,et al.  Estimating random amplitude polynomial phase signals: a cyclostationary approach , 1995, IEEE Trans. Signal Process..

[7]  A. M. Walker On the estimation of a harmonic component in a time series with stationary independent residuals , 1971 .

[8]  Brian D. O. Anderson,et al.  Characterization of threshold for single tone maximum likelihood frequency estimation , 1995, IEEE Trans. Signal Process..

[9]  Junzhong Liang,et al.  Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  B. Quinn Doppler speed and range estimation using frequency and amplitude estimates , 1995 .

[11]  Peter J. Kootsookos,et al.  Threshold behavior of the maximum likelihood estimator of frequency , 1994, IEEE Trans. Signal Process..

[12]  Benjamin Friedlander,et al.  The discrete polynomial-phase transform , 1995, IEEE Trans. Signal Process..

[13]  Shan Lu,et al.  Nonlinear modeling and processing of speech based on sums of AM-FM formant models , 1996, IEEE Trans. Signal Process..

[14]  Petros Maragos,et al.  Energy separation in signal modulations with application to speech analysis , 1993, IEEE Trans. Signal Process..

[15]  Petros Maragos,et al.  AM-FM energy detection and separation in noise using multiband energy operators , 1993, IEEE Trans. Signal Process..

[16]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[17]  M. R. Morelande Statistical analysis of phase parameter estimates of random amplitude linear FM signals , 1999, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99.

[18]  Mark R. Morelande,et al.  Estimating the dynamics of aberration components in the human eye , 2001, Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No.01TH8563).

[19]  W. Gardner Exploitation of spectral redundancy in cyclostationary signals , 1991, IEEE Signal Processing Magazine.

[20]  Boaz Porat,et al.  Estimation and classification of polynomial-phase signals , 1991, IEEE Trans. Inf. Theory.

[21]  Benjamin Friedlander,et al.  Estimation and statistical analysis of exponential polynomial signals , 1998, IEEE Trans. Signal Process..

[22]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[23]  Brian G. Ferguson,et al.  Application of the short‐time Fourier transform and the Wigner–Ville distribution to the acoustic localization of aircraft , 1994 .

[24]  Ananthram Swami,et al.  Parameter estimation for random amplitude chirp signals , 1999, IEEE Trans. Signal Process..

[25]  Joseph M. Francos,et al.  Estimation of amplitude and phase parameters of multicomponent signals , 1995, IEEE Trans. Signal Process..

[26]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[27]  Petre Stoica,et al.  Frequency estimation and detection for sinusoidal signals with arbitrary envelope: a nonlinear least-squares approach , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[28]  Ananthram Swami,et al.  Cramer-Rao bounds and maximum likelihood estimation for random amplitude phase-modulated signals , 1999, IEEE Trans. Signal Process..

[29]  Anna Scaglione,et al.  Statistical Analysis of the Product High-Order Ambiguity Function , 1999, IEEE Trans. Inf. Theory.

[30]  Benjamin Friedlander,et al.  Maximum likelihood estimation, analysis, and applications of exponential polynomial signals , 1999, IEEE Trans. Signal Process..

[31]  Benjamin Friedlander,et al.  Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals , 1996, IEEE Trans. Inf. Theory.

[32]  Ananthram Swami,et al.  Performance analysis for a class of amplitude modulated polynomial phase signals , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[33]  Georgios B. Giannakis,et al.  Nonparametric polyspectral estimators for kth-order (almost) cyclostationary processes , 1994, IEEE Trans. Inf. Theory.

[34]  Georgios B. Giannakis,et al.  Hybrid FM-polynomial phase signal modeling: parameter estimation and Cramer-Rao bounds , 1999, IEEE Trans. Signal Process..

[35]  D. C. Reid,et al.  Aircraft flight parameter estimation based on passive acoustic techniques using the polynomial Wigner–Ville distribution , 1997 .

[36]  B. Reddy,et al.  Introductory Functional Analysis , 1998 .

[37]  Benjamin Friedlander,et al.  A modification of the discrete polynomial transform , 1998, IEEE Trans. Signal Process..

[38]  B. Porat,et al.  Linear FM signal parameter estimation from discrete-time observations , 1991 .

[39]  Ananthram Swami,et al.  On polynomial phase signals with time-varying amplitudes , 1996, IEEE Trans. Signal Process..

[40]  Petros Maragos,et al.  Speech analysis and synthesis using an AM-FM modulation model , 1997, Speech Commun..

[41]  Petar M. Djuric,et al.  Parameter estimation of chirp signals , 1990, IEEE Trans. Acoust. Speech Signal Process..