An Efficient Semidefinite Programming Relaxation for the Graph Partition Problem

We derive a new semidefinite programming relaxation for the general graph partition problem (GPP). Our relaxation is based on matrix lifting with matrix variable having order equal to the number of vertices of the graph. We show that this relaxation is equivalent to the Frieze-Jerrum relaxation for the maximum k-cut problem with an additional constraint that involves the restrictions on the subset sizes. Because the new relaxation does not depend on the number of subsets k into which the graph should be partitioned we are able to compute bounds for large k. We compare theoretically and numerically the new relaxation with other semide-finite programming (SDP) relaxations for the GPP. The results show that our relaxation provides competitive bounds and is solved significantly faster than any other known SDP bound for the general GPP.

[1]  Franz Rendl,et al.  Semidefinite Programming and Graph Equipartition , 1998 .

[2]  Amir K. Khandani,et al.  Matrix-Lifting Semi-Definite Programming for Detection in Multiple Antenna Systems , 2010, IEEE Transactions on Signal Processing.

[3]  L. Wolsey,et al.  A new approach to minimising the frontwidth in finite element calculations , 1994 .

[4]  Thomas Lengauer,et al.  Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.

[5]  Horst D. Simon,et al.  Partitioning of unstructured problems for parallel processing , 1991 .

[6]  Michael Armbruster,et al.  LP and SDP branch-and-cut algorithms for the minimum graph bisection problem: a computational comparison , 2012, Math. Program. Comput..

[7]  Ernest S. Kuh,et al.  Simultaneous Floor Planning and Global Routing for Hierarchical Building-Block Layout , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[8]  Renata Sotirov,et al.  SDP Relaxations for Some Combinatorial Optimization Problems , 2012 .

[9]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[10]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[11]  B. Bollobás The evolution of random graphs , 1984 .

[12]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[13]  E. D. Klerk,et al.  Relaxations of Combinatorial Problems Via Association Schemes , 2012 .

[14]  Franz Rendl,et al.  Solving Graph Bisection Problems with Semidefinite Programming , 2000, INFORMS J. Comput..

[15]  Laurence A. Wolsey,et al.  The node capacitated graph partitioning problem: A computational study , 1998, Math. Program..

[16]  Franz Rendl,et al.  Copositive and semidefinite relaxations of the quadratic assignment problem , 2009, Discret. Optim..

[17]  Alan M. Frieze,et al.  Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION , 1995, IPCO.

[18]  R. M. Mattheyses,et al.  A Linear-Time Heuristic for Improving Network Partitions , 1982, 19th Design Automation Conference.

[19]  Rupak Biswas,et al.  Graph partitioning and parallel computing , 2000, Parallel Computing.

[20]  Henry Wolkowicz,et al.  On Lagrangian Relaxation of Quadratic Matrix Constraints , 2000, SIAM J. Matrix Anal. Appl..

[21]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[22]  Franz Rendl,et al.  Graph partitioning using linear and semidefinite programming , 2003, Math. Program..

[23]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[24]  Jennifer C. Hou,et al.  Distance-Constrained Scheduling and Its Applications to Real-Time Systems , 1996, IEEE Trans. Computers.

[25]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1998, JACM.

[26]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[27]  Roberto Battiti,et al.  Greedy, Prohibition, and Reactive Heuristics for Graph Partitioning , 1999, IEEE Trans. Computers.

[28]  Jiawei Zhang,et al.  An improved rounding method and semidefinite programming relaxation for graph partition , 2002, Math. Program..

[29]  Michael Armbruster,et al.  Branch-and-Cut for a Semidefinite Relaxation of Large-scale Minimum Bisection Problems , 2007 .

[30]  Christoph Helmberg A Cutting Plane Algorithm for Large Scale Semidefinite Relaxations , 2004, The Sharpest Cut.

[31]  George L. Nemhauser,et al.  Min-cut clustering , 1993, Math. Program..

[32]  Franz Rendl,et al.  Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..

[33]  Qing Zhao,et al.  Semidefinite Programming Relaxations for the Graph Partitioning Problem , 1999, Discret. Appl. Math..

[34]  M. R. Rao,et al.  The partition problem , 1993, Math. Program..

[35]  Michael Langberg,et al.  Approximation Algorithms for Maximization Problems Arising in Graph Partitioning , 2001, J. Algorithms.

[36]  Henry Wolkowicz,et al.  On Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming , 2011, Math. Oper. Res..

[37]  Etienne de Klerk,et al.  On semidefinite programming relaxations of maximum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-s , 2012, Mathematical Programming.

[38]  A. Hoffman,et al.  Lower bounds for the partitioning of graphs , 1973 .

[39]  Tamara G. Kolda,et al.  Partitioning Rectangular and Structurally Unsymmetric Sparse Matrices for Parallel Processing , 1999, SIAM J. Sci. Comput..

[40]  Miguel F. Anjos,et al.  A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem , 2011, Ann. Oper. Res..

[41]  Byung Ro Moon,et al.  Genetic Algorithm and Graph Partitioning , 1996, IEEE Trans. Computers.

[42]  Dion Gijswijt,et al.  Matrix Algebras and Semidefinite Programming Techniques for Codes , 2005, 1007.0906.

[43]  Laura A. Sanchis,et al.  Multiple-Way Network Partitioning , 1989, IEEE Trans. Computers.

[44]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[45]  Franz Rendl,et al.  A projection technique for partitioning the nodes of a graph , 1995, Ann. Oper. Res..

[46]  Henry Wolkowicz,et al.  A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem , 2009, Math. Oper. Res..