Free collisions in a microgravity many-particle experiment. IV. – Three-dimensional analysis of collision properties

[1]  M. Trieloff,et al.  The formation of the solar system , 2015, 1501.03101.

[2]  A. Johansen,et al.  Formation of pebble-pile planetesimals , 2014, 1408.2535.

[3]  J. Blum,et al.  Comets formed in solar-nebula instabilities! – An experimental and modeling attempt to relate the activity of comets to their formation process , 2014, 1403.2610.

[4]  Hans Rickman,et al.  The multifaceted planetesimal formation process , 2014, 1402.1344.

[5]  G. Wurm,et al.  EXPERIMENTAL STUDY ON BOUNCING BARRIERS IN PROTOPLANETARY DISKS , 2014, 1401.4280.

[6]  C. Dullemond,et al.  Planetesimal formation via sweep-up growth at the inner edge of dead zones , 2013, 1306.3412.

[7]  J. Blum,et al.  Free collisions in a microgravity many-particle experiment. III. The collision behavior of sub-millimeter-sized dust aggregates , 2013, 1302.5532.

[8]  F. Meru,et al.  FROM DUST TO PLANETESIMALS: AN IMPROVED MODEL FOR COLLISIONAL GROWTH IN PROTOPLANETARY DISKS , 2012, 1209.0013.

[9]  C. Dullemond,et al.  Breaking through: The effects of a velocity distribution on barriers to dust growth , 2012, 1208.0304.

[10]  T. Henning,et al.  Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth , 2012, 1201.4282.

[11]  J. Blum,et al.  Dust release and tensile strength of the non-volatile layer of cometary nuclei , 2011, 1111.0768.

[12]  J. Blum,et al.  Free collisions in a microgravity many-particle experiment. I. Dust aggregate sticking at low velocities , 2011, 1105.3909.

[13]  C. Dullemond,et al.  The outcome of protoplanetary dust growth: pebbles, boulders or planetesimals? , 2009, 1001.0488.

[14]  J. Blum,et al.  THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. III. COMPACTION IN MULTIPLE COLLISIONS , 2009, 0902.3082.

[15]  J. Blum,et al.  The Growth Mechanisms of Macroscopic Bodies in Protoplanetary Disks , 2008 .

[16]  S. Desch Mass Distribution and Planet Formation in the Solar Nebula , 2007 .

[17]  T. Henning,et al.  Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks , 2007, 0711.2192.

[18]  J. Blum,et al.  The Physics of Protoplanetesimal Dust Agglomerates. II. Low-Velocity Collision Properties , 2007, 0711.2148.

[19]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[20]  A. Johansen,et al.  Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration , 2007, astro-ph/0702626.

[21]  J. Blum,et al.  The Physics of Protoplanetesimal Dust Agglomerates. I. Mechanical Properties and Relations to Primitive Bodies in the Solar System , 2006 .

[22]  J. Blum,et al.  Dust agglomeration , 2006 .

[23]  Jonathan P. Williams,et al.  High-Resolution Submillimeter Constraints on Circumstellar Disk Structure , 2006, astro-ph/0610813.

[24]  C. Thornton,et al.  A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres , 1998 .

[25]  J. Blum,et al.  Experimental Investigations on Aggregate-Aggregate Collisions in the Early Solar Nebula , 1993 .

[26]  S. Weidenschilling,et al.  Aerodynamics of solid bodies in the solar nebula. , 1977 .

[27]  Bart Nooteboom,et al.  A theoretical model , 2018 .