Split diversity in constrained conservation prioritization using integer linear programming

Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization. Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator–prey interactions between the species in a community to define viability constraints. Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure. We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.

[1]  David Bryant,et al.  The link between segregation and phylogenetic diversity , 2010, Journal of mathematical biology.

[2]  Kevin J. Gaston,et al.  Optimisation in reserve selection procedures—why not? , 2002 .

[3]  Charles Semple,et al.  Combinatorial and probabilistic methods in biodiversity theory , 2010 .

[4]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[5]  M. Winter,et al.  Phylogenetic diversity and nature conservation: where are we? , 2013, Trends in ecology & evolution.

[6]  K. D. Cocks,et al.  Using mathematical programming to address the multiple reserve selection problem: An example from the Eyre Peninsula, South Australia , 1989 .

[7]  Christian Brochmann,et al.  Refugia, differentiation and postglacial migration in arctic‐alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.) , 2006, Molecular ecology.

[8]  Hugh P. Possingham,et al.  Optimality in reserve selection algorithms: When does it matter and how much? , 1996 .

[9]  H. Philippe,et al.  Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough , 2011, PLoS biology.

[10]  Andrew F. Brown,et al.  Biodiversity: An Introduction , 1999, Biodiversity & Conservation.

[11]  D. Faith Conservation evaluation and phylogenetic diversity , 1992 .

[12]  Lehtomäki Joona,et al.  ZONATION Framework and Software for Conservation Prioritization , 2013 .

[13]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[14]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[15]  Robert M. May,et al.  Taxonomy as destiny , 1990, Nature.

[16]  J. Victor,et al.  DATA DEFICIENT FLAGS FOR USE IN THE RED LIST OF SOUTH AFRICAN PLANTS , 2006 .

[17]  Hans Peter Linder,et al.  Plant diversity and endemism in sub‐Saharan tropical Africa , 2001 .

[18]  S. Andelman,et al.  Mathematical Methods for Identifying Representative Reserve Networks , 2000 .

[19]  Peter Goldblatt,et al.  Plant Diversity of the Cape Region of Southern Africa , 2002 .

[20]  Andy Purvis,et al.  Phylogeny and Conservation , 2009 .

[21]  D. Tilman,et al.  Phylogenetic diversity promotes ecosystem stability , 2012 .

[22]  D. Mindell Fundamentals of molecular evolution , 1991 .

[23]  K Williams,et al.  More than a meal. , 2001, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[24]  M. Nei Molecular Evolutionary Genetics , 1987 .

[25]  Charles Semple,et al.  Optimizing phylogenetic diversity under constraints. , 2007, Journal of theoretical biology.

[26]  A. Eyre-Walker Fundamentals of Molecular Evolution (2nd edn) , 2000, Heredity.

[27]  Hayri Önal,et al.  Selection of a minimum–boundary reserve network using integer programming , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  Richard M. Cowling,et al.  The ecology of fynbos: nutrients, fire and diversity. , 1993 .

[29]  Dan Graur,et al.  Fundamentals of Molecular Evolution, 2nd Edition , 2000 .

[30]  Hayri Önal,et al.  First-best, second-best, and heuristic solutions in conservation reserve site selection , 2004 .

[31]  L. Orgel,et al.  Phylogenetic Classification and the Universal Tree , 1999 .

[32]  M. Jünger,et al.  50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art , 2010 .

[33]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[34]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[35]  Eve McDonald-Madden,et al.  Is conservation triage just smart decision making? , 2008, Trends in ecology & evolution.

[36]  Hayri Önal,et al.  Incorporating spatial criteria in optimum reserve network selection , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  B. Rannala,et al.  Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.

[38]  Bui Quang Minh,et al.  Taxon Selection under Split Diversity. , 2009, Systematic biology.

[39]  T. Brooks,et al.  Hotspots Revisited: Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions , 2000 .

[40]  Nicholas Mirotchnick,et al.  Phylogenetic diversity and the functioning of ecosystems. , 2012, Ecology letters.

[41]  Bui Quang Minh,et al.  SDA*: A Simple and Unifying Solution to Recent Bioinformatic Challenges for Conservation Genetics , 2010, 2010 Second International Conference on Knowledge and Systems Engineering.

[42]  Robert G. Haight,et al.  Integer programming methods for reserve selection and design , 2009 .

[43]  Richard Grenyer,et al.  Preserving the evolutionary potential of floras in biodiversity hotspots , 2007, Nature.

[44]  Doolittle Wf Phylogenetic Classification and the Universal Tree , 1999 .

[45]  P. Zedler,et al.  The ecology of fynbos: Nutrients, fire and diversity , 1993 .

[46]  Paul H. Williams,et al.  What to protect?—Systematics and the agony of choice , 1991 .

[47]  B. Ebenman,et al.  COMMUNITY VIABILITY ANALYSIS: THE RESPONSE OF ECOLOGICAL COMMUNITIES TO SPECIES LOSS , 2004 .

[48]  H. Linder,et al.  The radiation of the Cape flora, southern Africa , 2003, Biological reviews of the Cambridge Philosophical Society.

[49]  Les G. Underhill,et al.  Optimal and suboptimal reserve selection algorithms , 1994 .

[50]  Deborah P. Waldrop,et al.  More than a Meal , 2001 .

[51]  Ross H. Crozier,et al.  Genetic diversity and the agony of choice , 1992 .

[52]  W. Jetz,et al.  Global patterns and determinants of vascular plant diversity , 2007, Proceedings of the National Academy of Sciences.

[53]  G. A. Watterson On the number of segregating sites in genetical models without recombination. , 1975, Theoretical population biology.

[54]  Sonia Kéfi,et al.  More than a meal… integrating non-feeding interactions into food webs. , 2012, Ecology letters.

[55]  Arndt von Haeseler,et al.  Split Diversity: Measuring and Optimizing Biodiversity Using Phylogenetic Split Networks , 2016 .

[56]  H. Possingham,et al.  Spatial conservation prioritization: Quantitative methods and computational tools , 2009, Environmental Conservation.

[57]  H. Linder,et al.  Evolution of diversity: the Cape flora. , 2005, Trends in plant science.

[58]  Jon C. Lovett,et al.  Africa's hotspots of biodiversity redefined , 2004 .

[59]  N. Isaac,et al.  Mammals on the EDGE: Conservation Priorities Based on Threat and Phylogeny , 2007, PloS one.

[60]  Matthew E. Watts,et al.  Marxan and relatives: Software for spatial conservation prioritization , 2009 .