The structural and functional diversity of metabolite-binding riboswitches.

The cellular concentrations of certain metabolites are assiduously monitored to achieve appropriate levels of gene expression. Although proteins have long been known to act as sensors in this capacity, metabolite-binding RNAs, or riboswitches, also play an important role. More than 20 distinct classes of riboswitches have been identified to date, and insights to the molecular recognition strategies of a significant subset of these have been provided by detailed structural studies. This diverse set of metabolite-sensing RNAs is found to exploit a variety of distinct mechanisms to regulate genes that are fundamental to metabolism.

[1]  A. Serganov,et al.  Structural insights into amino acid binding and gene control by a lysine riboswitch , 2008, Nature.

[2]  P. Burguière,et al.  S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum , 2008, Nucleic acids research.

[3]  T. Henkin,et al.  Crystal structures of the SAM-III/SMK riboswitch reveal the SAM-dependent translation inhibition mechanism , 2008, Nature Structural &Molecular Biology.

[4]  R. Batey,et al.  Crystal Structure of the Lysine Riboswitch Regulatory mRNA Element* , 2008, Journal of Biological Chemistry.

[5]  R. Breaker,et al.  Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMP , 2008, Science.

[6]  N. Ban,et al.  Structural basis of thiamine pyrophosphate analogues binding to the eukaryotic riboswitch. , 2008, Journal of the American Chemical Society.

[7]  S. Altman,et al.  RNase P cleaves the adenine riboswitch and stabilizes pbuE mRNA in Bacillus subtilis. , 2008, RNA.

[8]  Feng Qiao,et al.  Triple-helix structure in telomerase RNA contributes to catalysis , 2008, Nature Structural &Molecular Biology.

[9]  R. Montange,et al.  Riboswitches: emerging themes in RNA structure and function. , 2008, Annual review of biophysics.

[10]  Zasha Weinberg,et al.  The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. , 2008, RNA.

[11]  W. L. Ruzzo,et al.  A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism , 2008, Molecular microbiology.

[12]  Adam Roth,et al.  Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. , 2008, RNA.

[13]  R. Breaker,et al.  Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. , 2008, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[14]  F. C. Soncini,et al.  Regulation of magnesium homeostasis in Salmonella: Mg(2+) targets the mgtA transcript for degradation by RNase E. , 2008, FEMS microbiology letters.

[15]  R. Batey,et al.  Structure of the SAM-II riboswitch bound to S-adenosylmethionine , 2008, Nature Structural &Molecular Biology.

[16]  Michael E Webb,et al.  Thiamine biosynthesis in algae is regulated by riboswitches , 2007, Proceedings of the National Academy of Sciences.

[17]  Juan Miranda-Ríos,et al.  Molecular basis of gene regulation by the THI‐box riboswitch , 2007, Molecular microbiology.

[18]  Irnov Irnov,et al.  Mechanism of mRNA destabilization by the glmS ribozyme. , 2007, Genes & development.

[19]  Scott A Strobel,et al.  Chemical basis of glycine riboswitch cooperativity. , 2007, RNA.

[20]  Samuel Bocobza,et al.  Riboswitch-dependent gene regulation and its evolution in the plant kingdom. , 2007, Genes & development.

[21]  Jeffrey E. Barrick,et al.  The distributions, mechanisms, and structures of metabolite-binding riboswitches , 2007, Genome Biology.

[22]  R. Breaker,et al.  Riboswitch Control of Gene Expression in Plants by Splicing and Alternative 3′ End Processing of mRNAs[W][OA] , 2007, The Plant Cell Online.

[23]  A. Ferré-D’Amaré,et al.  Requirement of helix P2.2 and nucleotide G1 for positioning the cleavage site and cofactor of the glmS ribozyme. , 2007, Journal of molecular biology.

[24]  Ronald R. Breaker,et al.  Guanine riboswitch variants from Mesoplasma florum selectively recognize 2′-deoxyguanosine , 2007, Proceedings of the National Academy of Sciences.

[25]  M. Gelfand,et al.  Abundance and functional diversity of riboswitches in microbial communities , 2007, BMC Genomics.

[26]  Catherine A. Wakeman,et al.  Structure and Mechanism of a Metal-Sensing Regulatory RNA , 2007, Cell.

[27]  J. Mattick,et al.  Raising the estimate of functional human sequences. , 2007, Genome research.

[28]  Renate Rieder,et al.  Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach , 2007, Nucleic acids research.

[29]  D. Lafontaine,et al.  A loop loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control. , 2007, RNA.

[30]  Shane J. Neph,et al.  Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline , 2007, Nucleic acids research.

[31]  A. Ferré-D’Amaré,et al.  Riboswitches: small-molecule recognition by gene regulatory RNAs. , 2007, Current opinion in structural biology.

[32]  R. Micura,et al.  Ligand‐Induced Folding of the Adenosine Deaminase A‐Riboswitch and Implications on Riboswitch Translational Control , 2007, Chembiochem : a European journal of chemical biology.

[33]  R. Breaker,et al.  Control of alternative RNA splicing and gene expression by eukaryotic riboswitches , 2007, Nature.

[34]  N. Walter,et al.  Trans-acting glmS catalytic riboswitch: locked and loaded. , 2007, RNA.

[35]  Adam Roth,et al.  A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain , 2007, Nature Structural &Molecular Biology.

[36]  R. Breaker,et al.  Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis. , 2007, RNA.

[37]  T. Henkin,et al.  S-adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the SMK box translational riboswitch RNA , 2007, Proceedings of the National Academy of Sciences.

[38]  H. Schwalbe,et al.  Structures of RNA switches: insight into molecular recognition and tertiary structure. , 2007, Angewandte Chemie.

[39]  Sebastian Doniach,et al.  Structural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae. , 2007, Journal of molecular biology.

[40]  Piotr Borsuk,et al.  l-Arginine influences the structure and function of arginase mRNA in Aspergillus nidulans , 2007, Biological chemistry.

[41]  R. Breaker,et al.  Characteristics of ligand recognition by a glmS self-cleaving ribozyme. , 2006, Angewandte Chemie.

[42]  Jeffrey E. Barrick,et al.  Tandem Riboswitch Architectures Exhibit Complex Gene Control Functions , 2006, Science.

[43]  A. Ferré-D’Amaré,et al.  Structural Basis of glmS Ribozyme Activation by Glucosamine-6-Phosphate , 2006, Science.

[44]  M. Ciampi,et al.  Rho-dependent terminators and transcription termination. , 2006, Microbiology.

[45]  A. Ferré-D’Amaré,et al.  Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. , 2006, Structure.

[46]  D. Lilley,et al.  Folding of the adenine riboswitch. , 2006, Chemistry & biology.

[47]  R. Montange,et al.  Structure of the S-adenosylmethionine riboswitch regulatory mRNA element , 2006, Nature.

[48]  A. Serganov,et al.  Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch , 2006, Nature.

[49]  R. Batey,et al.  Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. , 2006, Journal of molecular biology.

[50]  Ken J Hampel,et al.  Evidence for preorganization of the glmS ribozyme ligand binding pocket. , 2006, Biochemistry.

[51]  N. Ban,et al.  Structure of the Eukaryotic Thiamine Pyrophosphate Riboswitch with Its Regulatory Ligand , 2006, Science.

[52]  Eduardo A. Groisman,et al.  An RNA Sensor for Intracellular Mg2+ , 2006, Cell.

[53]  R. Breaker,et al.  Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions. , 2006, RNA.

[54]  T. Henkin,et al.  The SMK box is a new SAM-binding RNA for translational regulation of SAM synthetase , 2006, Nature Structural &Molecular Biology.

[55]  R. Breaker,et al.  Molecular-recognition characteristics of SAM-binding riboswitches. , 2006, Angewandte Chemie.

[56]  Sara R. Wilkinson,et al.  A pseudoknot in the 3' non-core region of the glmS ribozyme enhances self-cleavage activity. , 2005, RNA.

[57]  R. Breaker,et al.  Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. , 2005, Chemistry & biology.

[58]  G. Soukup,et al.  Ligand requirements for glmS ribozyme self-cleavage. , 2005, Chemistry & biology.

[59]  D. Crothers,et al.  The kinetics of ligand binding by an adenine-sensing riboswitch. , 2005, Biochemistry.

[60]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[61]  S. Altman,et al.  RNase P cleaves transient structures in some riboswitches. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Jeffrey E. Barrick,et al.  Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria , 2005, Genome Biology.

[63]  Akira Nishimura,et al.  Roles of Mg2+ in TPP‐dependent riboswitch , 2005, FEBS letters.

[64]  D. Draper,et al.  Ions and RNA folding. , 2005, Annual review of biophysics and biomolecular structure.

[65]  D. Crothers,et al.  The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. , 2005, Molecular cell.

[66]  H. Schwalbe,et al.  An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  R. Pejchal,et al.  Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel That Evolved by Gene Duplication , 2004, PLoS biology.

[68]  A. Serganov,et al.  Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. , 2004, Chemistry & biology.

[69]  R. Montange,et al.  Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine , 2004, Nature.

[70]  T. Cech,et al.  Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. , 2004, Molecular cell.

[71]  Inna Dubchak,et al.  Reconstruction of regulatory and metabolic pathways in metal-reducing δ-proteobacteria , 2004, Genome Biology.

[72]  Inna Dubchak,et al.  Reconstruction Of Regulatory And Metabolic Pathways In Metal-Reducing delta-Proteobacteria , 2004 .

[73]  Scott A. Strobel,et al.  Crystal structure of a self-splicing group I intron with both exons , 2004, Nature.

[74]  Jack W. Szostak,et al.  A Small Aptamer with Strong and Specific Recognition of the Triphosphate of ATP , 2004, Journal of the American Chemical Society.

[75]  Jeffrey E. Barrick,et al.  New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[76]  R. Breaker,et al.  Control of gene expression by a natural metabolite-responsive ribozyme , 2004, Nature.

[77]  Jeffrey E. Barrick,et al.  Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. , 2004, Nucleic acids research.

[78]  Nobuo Yamashita,et al.  Thiamine‐regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch‐like domain in the 5′‐UTR , 2003, FEBS letters.

[79]  J. Szostak,et al.  Evolution of aptamers with a new specificity and new secondary structures from an ATP aptamer. , 2003, RNA.

[80]  Margaret S. Ebert,et al.  An mRNA structure in bacteria that controls gene expression by binding lysine. , 2003, Genes & development.

[81]  T. Henkin,et al.  The L box regulon: Lysine sensing by leader RNAs of bacterial lysine biosynthesis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[82]  T. Hermann Chemical and functional diversity of small molecule ligands for RNA. , 2003, Biopolymers.

[83]  Ali Nahvi,et al.  An mRNA structure that controls gene expression by binding S-adenosylmethionine , 2003, Nature Structural Biology.

[84]  J. McCarthy,et al.  Regulation of fungal gene expression via short open reading frames in the mRNA 5′untranslated region , 2003, Molecular microbiology.

[85]  Thomas A Steitz,et al.  RNA, the first macromolecular catalyst: the ribosome is a ribozyme. , 2003, Trends in biochemical sciences.

[86]  J. Berger,et al.  Structure of the Rho Transcription Terminator Mechanism of mRNA Recognition and Helicase Loading , 2003, Cell.

[87]  Jeffrey E. Barrick,et al.  Metabolite-binding RNA domains are present in the genes of eukaryotes. , 2003, RNA.

[88]  Jeffrey E. Barrick,et al.  Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria , 2003, Cell.

[89]  Vitaly Epshtein,et al.  The riboswitch-mediated control of sulfur metabolism in bacteria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[90]  T. Henkin,et al.  Transcription termination control of the S box system: Direct measurement of S-adenosylmethionine by the leader RNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[91]  J. Doudna,et al.  Structural insights into the signal recognition particle. , 2003, Annual review of biochemistry.

[92]  M. Gelfand,et al.  Comparative Genomics of Thiamin Biosynthesis in Procaryotes , 2002, The Journal of Biological Chemistry.

[93]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[94]  Ali Nahvi,et al.  Genetic control by a metabolite binding mRNA. , 2002, Chemistry & biology.

[95]  G. Fox,et al.  Frequent occurrence of the T-loop RNA folding motif in ribosomal RNAs. , 2002, RNA.

[96]  A. Pyle,et al.  Metal ions in the structure and function of RNA , 2002, JBIC Journal of Biological Inorganic Chemistry.

[97]  Jennifer A. Doudna,et al.  The chemical repertoire of natural ribozymes , 2002, Nature.

[98]  R. Hille Molybdenum and tungsten in biology. , 2002, Trends in biochemical sciences.

[99]  J. Manley,et al.  Splicing-related catalysis by protein-free snRNAs , 2001, Nature.

[100]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[101]  J. Miranda-Ríos,et al.  A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[102]  R. Lin,et al.  Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome , 2000, Nature.

[103]  J. Wise,et al.  Evidence for Splice Site Pairing via Intron Definition in Schizosaccharomyces pombe , 2000, Molecular and Cellular Biology.

[104]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[105]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[106]  A Scarpa,et al.  Regulation of cellular magnesium. , 2000, Frontiers in bioscience : a journal and virtual library.

[107]  R. Kadner,et al.  Adenosylcobalamin inhibits ribosome binding to btuB RNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[108]  Jeffrey W. Roberts,et al.  Mechanism of intrinsic transcription termination and antitermination. , 1999, Science.

[109]  E. Nudler,et al.  The mechanism of intrinsic transcription termination. , 1999, Molecular cell.

[110]  E Westhof,et al.  The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. , 1998, RNA.

[111]  T. Steitz,et al.  Metals, Motifs, and Recognition in the Crystal Structure of a 5S rRNA Domain , 1997, Cell.

[112]  R. Matthews,et al.  Cobalamin-independent methionine synthase from Escherichia coli: a zinc metalloenzyme. , 1996, Biochemistry.

[113]  M. Adams,et al.  Tungsten in biological systems. , 1996, FEMS microbiology reviews.

[114]  Jack W. Szostak,et al.  An RNA motif that binds ATP , 1993, Nature.

[115]  Harry F. Noller,et al.  Interaction of antibiotics with functional sites in 16S ribosomal RNA , 1987, Nature.

[116]  T. Cech,et al.  Ribozyme inhibitors: deoxyguanosine and dideoxyguanosine are competitive inhibitors of self-splicing of the Tetrahymena ribosomal ribonucleic acid precursor. , 1986, Biochemistry.

[117]  S. Nishimura,et al.  Possible anticodon sequences of tRNA His , tRNA Asm , and tRNA Asp from Escherichia coli B. Universal presence of nucleoside Q in the first postion of the anticondons of these transfer ribonucleic acids. , 1972, Biochemistry.

[118]  R. Russell RNA misfolding and the action of chaperones. , 2008, Frontiers in bioscience : a journal and virtual library.

[119]  S. Strobel,et al.  Structural investigation of the GlmS ribozyme bound to Its catalytic cofactor. , 2007, Chemistry & biology.

[120]  R. Breaker,et al.  Antibacterial lysine analogs that target lysine riboswitches. , 2007, Nature chemical biology.

[121]  B. Golden,et al.  Crystal structure of a phage Twort group I ribozyme–product complex , 2005, Nature Structural &Molecular Biology.

[122]  M. Gelfand,et al.  Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. , 2004, Nucleic acids research.

[123]  R. Breaker,et al.  Adenine riboswitches and gene activation by disruption of a transcription terminator , 2004, Nature Structural &Molecular Biology.

[124]  Dan Mercola,et al.  A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression , 2004 .

[125]  C. Hutchison,et al.  Mycoplasmas and the Minimal Genome Concept , 2002 .

[126]  C. W. Hilbers,et al.  New developments in structure determination of pseudoknots , 1998, Biopolymers.

[127]  T. Cech,et al.  Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA , 1984, Nature.