Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles

LINE-1 retrotransposons (L1s) constitute ∼17% of human DNA, and their activity continues to affect genome evolution. Retrotransposition-competent human L1s encode two proteins required for their mobility (ORF1p and ORF2p); however, biochemical activities associated with ORF2p have been difficult to detect in cells. Here, we show for the first time the colocalization of L1 RNA, ORF1p and ORF2p to a putative ribonucleoprotein retrotransposition intermediate. We further demonstrate that ORF2p preferentially uses its encoding RNA as a template for reverse transcription. Thus, our data provide the first biochemical evidence supporting the cis-preferential action of the L1 reverse transcriptase.

[1]  J. V. Moran,et al.  Genomic Deletions Created upon LINE-1 Retrotransposition , 2002, Cell.

[2]  Jef D. Boeke,et al.  Human L1 Retrotransposition: cisPreference versus trans Complementation , 2001, Molecular and Cellular Biology.

[3]  T. Kunkel,et al.  Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro , 1989, Molecular and cellular biology.

[4]  J. V. Moran,et al.  Many human L1 elements are capable of retrotransposition , 1997, Nature Genetics.

[5]  S. Chambeyron,et al.  Tandem UAA Repeats at the 3′-End of the Transcript Are Essential for the Precise Initiation of Reverse Transcription of the I Factor inDrosophila melanogaster * , 2002, The Journal of Biological Chemistry.

[6]  T Darden,et al.  Evolution and extinction of transposable elements in Mendelian populations. , 1985, Genetics.

[7]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[8]  A. Bibiłło,et al.  End-to-End Template Jumping by the Reverse Transcriptase Encoded by the R2 Retrotransposon* , 2004, Journal of Biological Chemistry.

[9]  J. V. Moran,et al.  Mammalian LINE-1 Retrotransposons and Related Elements , 2002 .

[10]  H. Kazazian,et al.  LINE Drive Retrotransposition and Genome Instability , 2002, Cell.

[11]  E. Ostertag,et al.  Evidence consistent with human L1 retrotransposition in maternal meiosis I. , 2002, American journal of human genetics.

[12]  C. Hutchison,et al.  An analysis of replacement and synonymous changes in the rodent L1 repeat family. , 1986, Molecular biology and evolution.

[13]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[14]  A. F. Scott,et al.  Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Mark Gerstein,et al.  Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. , 2003, Genome research.

[16]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[17]  F. Bushman,et al.  Nucleic Acid Chaperone Activity of the ORF1 Protein from the Mouse LINE-1 Retrotransposon , 2001, Molecular and Cellular Biology.

[18]  R. Hodges,et al.  LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. , 2005, Journal of molecular biology.

[19]  H. Lauke,et al.  Cell Type-specific Expression of LINE-1 Open Reading Frames 1 and 2 in Fetal and Adult Human Tissues* , 2004, Journal of Biological Chemistry.

[20]  J. V. Moran,et al.  A transient assay reveals that cultured human cells can accommodate multiple LINE-1 retrotransposition events. , 2000, Analytical biochemistry.

[21]  A. F. Scott,et al.  Isolation of an active human transposable element. , 1991, Science.

[22]  J. Boeke,et al.  Reverse transcriptase encoded by a human transposable element. , 1991, Science.

[23]  O. Piskareva,et al.  DNA polymerization by the reverse transcriptase of the human L1 retrotransposon on its own template in vitro , 2006, FEBS Letters.

[24]  O. Piskareva,et al.  Functional reverse transcriptase encoded by the human LINE-1 from baculovirus-infected insect cells. , 2003, Protein expression and purification.

[25]  J. V. Moran,et al.  DNA repair mediated by endonuclease-independent LINE-1 retrotransposition , 2002, Nature Genetics.

[26]  Thierry Heidmann,et al.  Human LINE retrotransposons generate processed pseudogenes , 2000, Nature Genetics.

[27]  T. Eickbush,et al.  RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element , 1995, Molecular and cellular biology.

[28]  A. F. Scott,et al.  Origin of the human L1 elements: Proposed progenitor genes deduced from a consensus DNA sequence☆ , 1987, Genomics.

[29]  J. V. Moran,et al.  Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. , 2005, Human molecular genetics.

[30]  J. V. Moran,et al.  Multiple Fates of L1 Retrotransposition Intermediates in Cultured Human Cells , 2005, Molecular and Cellular Biology.

[31]  S. Martin,et al.  Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells , 1991, Molecular and cellular biology.

[32]  Giovanni Parmigiani,et al.  Human L1 Retrotransposition Is Associated with Genetic Instability In Vivo , 2002, Cell.

[33]  H. Hohjoh,et al.  Cytoplasmic ribonucleoprotein complexes containing human LINE‐1 protein and RNA. , 1996, The EMBO journal.

[34]  E. Ostertag,et al.  A potential role for the nucleolus in L1 retrotransposition. , 2004, Human molecular genetics.

[35]  Jef D Boeke,et al.  Human L1 element target‐primed reverse transcription in vitro , 2002, The EMBO journal.

[36]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.