Quantum plasmons with optical-range frequencies in doped few-layer graphene

Although plasmon modes exist in doped graphene, the limited range of doping achieved by gating restricts the plasmon frequencies to a range that does not include visible and infrared. Here we show, through the use of first-principles calculations, that the high levels of doping achieved by lithium intercalation in bilayer and trilayer graphene shift the plasmon frequencies into the visible range. To obtain physically meaningful results, we introduce a correction of the effect of plasmon interaction across the vacuum separating periodic images of the doped graphene layers, consisting of transparent boundary conditions in the direction perpendicular to the layers; this represents a significant improvement over the Exact Coulomb cutoff technique employed in earlier works. The resulting plasmon modes are due to local field efffects and the non-local response of the material to external electromagnetic fields, requiring a fully quantum mechanical treatment. We describe the features of these quantum plasmons, including the dispersion relation, losses and field localization. Our findings point to a strategy for fine-tuning the plasmon frequencies in graphene and other two dimensional materials.

[1]  Ravishankar Sundararaman,et al.  Experimental and Ab Initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles. , 2016, Physical review letters.

[2]  Ravishankar Sundararaman,et al.  Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. , 2016, ACS nano.

[3]  A. Jauho,et al.  Unusual resonances in nanoplasmonic structures due to nonlocal response , 2011, 1106.2175.

[4]  K. N. Dollman,et al.  - 1 , 1743 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Takashi Takahashi,et al.  Fabrication of Li-intercalated bilayer graphene , 2011 .

[7]  B. Yakobson,et al.  Two-Dimensional Boron Polymorphs for Visible Range Plasmonics: A First-Principles Exploration. , 2017, Journal of the American Chemical Society.

[8]  F. Guinea,et al.  Novel midinfrared plasmonic properties of bilayer graphene. , 2013, Physical review letters.

[9]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[10]  George Papadakis,et al.  Development of a combined surface plasmon resonance/surface acoustic wave device for the characterization of biomolecules , 2009 .

[11]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[12]  G. Profeta,et al.  Phonon-mediated superconductivity in graphene by lithium deposition , 2012, Nature Physics.

[13]  D. Novko,et al.  Two-dimensional and π plasmon spectra in pristine and doped graphene , 2013 .

[14]  R. A. Jishi,et al.  Superconductivity in graphene-lithium , 2013, 1310.3813.

[15]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[16]  M. Bazant,et al.  Li Intercalation into Graphite: Direct Optical Imaging and Cahn-Hilliard Reaction Dynamics. , 2016, The journal of physical chemistry letters.

[17]  Donhee Ham,et al.  Ultra-subwavelength two-dimensional plasmonic circuits. , 2012, Nano letters.

[18]  E. Kaxiras,et al.  Li intercalation at graphene/hexagonal boron nitride interfaces , 2016 .

[19]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[20]  K. Jacobsen,et al.  Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces , 2011, 1104.1273.

[21]  R. Sundararaman,et al.  Effects of Interlayer Coupling on Hot‐Carrier Dynamics in Graphene‐Derived van der Waals Heterostructures , 2016, 1612.08196.

[22]  K. Thygesen,et al.  Dielectric Genome of van der Waals Heterostructures. , 2015, Nano letters.

[23]  Jain,et al.  Elementary electronic excitations in a quasi-two-dimensional electron gas. , 1987, Physical review. B, Condensed matter.

[24]  Andrew G. Glen,et al.  APPL , 2001 .

[25]  K. Thygesen,et al.  Plasmons in metallic monolayer and bilayer transition metal dichalcogenides , 2013, 1311.0158.

[26]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[27]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[28]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[29]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[30]  William A. Goddard,et al.  Ab initio phonon coupling and optical response of hot electrons in plasmonic metals , 2016, 1602.00625.

[31]  George C. Schatz,et al.  The journal of physical chemistry letters , 2009 .

[32]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.

[33]  Excitonic effects on optical absorption spectra of doped graphene. , 2011, Nano letters.

[34]  L. Francis,et al.  Simultaneous surface acoustic wave and surface plasmon resonance measurements: Electrodeposition and biological interactions monitoring , 2003, cond-mat/0307105.

[35]  V. Despoja,et al.  Prediction of measurable two-dimensional plasmons in Li-intercalated graphene LiC 2 , 2017 .

[36]  E. Gross,et al.  Exact coulomb cutoff technique for supercell calculations , 2006, cond-mat/0601031.

[37]  J. M. Pitarke,et al.  Low-energy acoustic plasmons at metal surfaces , 2007, Nature.

[38]  Marios Mattheakis,et al.  Epsilon-near-zero behavior from plasmonic Dirac point: Theory and realization using two-dimensional materials , 2016 .

[39]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[40]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[41]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[42]  Valerio Pruneri,et al.  Mid-infrared plasmonic biosensing with graphene , 2015, Science.

[43]  E. Yu,et al.  Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles , 2005 .

[44]  B. Yakobson,et al.  Can Two-Dimensional Boron Superconduct? , 2016, Nano letters.

[45]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[46]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[47]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[48]  John Robertson,et al.  Sulfur vacancies in monolayer MoS2 and its electrical contacts , 2013 .