Light Trapping in Thin Crystalline Si Solar Cells Using Surface Mie Scatterers

Dielectric nanoparticles placed on top of a thin-film solar cell strongly enhance light absorption in the cell over a broad spectral range due to the preferential forward scattering of light from leaky Mie resonances in the particle. In this study, we systematically study with numerical simulations the absorption of light into thin (1-100 μm) crystalline Si solar cells patterned with Si nanocylinder arrays on top of the cell. We then use an analytical model to calculate the solar cell efficiency, based on the simulated absorption spectra. Using realistic values for bulk and surface recombination rates, we find that a 20-μm-thick Si solar cell with 21.5% efficiency can be made by using the Si nanocylinder Mie coating.

[1]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[2]  B. Rech,et al.  Polycrystalline silicon thin-film solar cells: Status and perspectives , 2013 .

[3]  Martin A. Green,et al.  Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon , 2013 .

[4]  A. Polman,et al.  Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination , 2013 .

[5]  Albert Polman,et al.  Resonant modes of single silicon nanocavities excited by electron irradiation. , 2013, ACS nano.

[6]  A. Polman,et al.  Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells , 2012 .

[7]  Marc Meuris,et al.  Crystalline thin‐foil silicon solar cells: where crystalline quality meets thin‐film processing , 2012 .

[8]  C. Ballif,et al.  High-efficiency Silicon Heterojunction Solar Cells: A Review , 2012 .

[9]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[10]  Rolf Brendel,et al.  19%‐efficient and 43 µm‐thick crystalline Si solar cell from layer transfer using porous silicon , 2012 .

[11]  A. Polman,et al.  Optical impedance matching using coupled plasmonic nanoparticle arrays. , 2011, Nano letters.

[12]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[13]  M. Zeman,et al.  The AM1.5 absorption factor of thin-film solar cells , 2010 .

[14]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[15]  Tristan L. Temple,et al.  Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells , 2009 .

[16]  Daniel Derkacs,et al.  Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices , 2008 .

[17]  K. R. Catchpolea,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[18]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[19]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[20]  A. Cuevas,et al.  General parameterization of Auger recombination in crystalline silicon , 2002 .

[21]  R. Sinton,et al.  Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data , 1996 .

[22]  W. Southwell Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces , 1991 .

[23]  E. Yablonovitch,et al.  Maximum statistical increase of optical absorption in textured semiconductor films. , 1983, Optics letters.

[24]  G. Cody,et al.  Intensity enhancement in textured optical sheets for solar cells , 1982, IEEE Transactions on Electron Devices.

[25]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .