A Novel Parameter Identification Approach via Hybrid Learning for Aggregate Load Modeling

Parameter identification is the key technology in measurement-based load modeling. A hybrid learning algorithm is proposed to identify parameters for the aggregate load model (ZIP augmented with induction motor). The hybrid learning algorithm combines the genetic algorithm (GA) and the nonlinear Levenberg-Marquardt (L-M) algorithm. It takes advantages of the global search ability of GA and the local search ability of L-M algorithm, which is a more powerful search technique. The proposed algorithm is tested for load parameter identifications using both simulation data and field measurement data. Numerical results illustrate that the hybrid learning algorithm can improve the accuracy and reduce the computation time for load model parameter identifications.

[1]  Yunping Chen,et al.  The load modeling and parameters identification for voltage stability analysis , 2002, Proceedings. International Conference on Power System Technology.

[2]  Jürgen Kurths,et al.  Modeling and identification of nonlinear systems , 2004 .

[3]  C. W. Taylor,et al.  Standard load models for power flow and dynamic performance simulation , 1995 .

[4]  I. Hiskens Nonlinear dynamic model evaluation from disturbance measurements , 2002, 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309).

[5]  O. Nelles Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .

[6]  Roland P. Malhamé,et al.  Convergence characteristics of a maximum likelihood load model identification scheme , 1992, Autom..

[7]  Yung-Tien Chen,et al.  Comparison of simulated power system dynamics applying various load models with actual recorded data , 1994 .

[8]  S.Z. Zhu,et al.  Effect of load modeling on voltage stability , 2000, 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134).

[9]  David J. Hill,et al.  Revealing loads having the biggest influence on power system small disturbance stability , 1996 .

[10]  Jovica V. Milanovic,et al.  Load modelling in studies of power system damping , 1995 .

[11]  C.A. Canizares,et al.  On the parameter estimation and modeling of aggregate power system loads , 2004, IEEE Transactions on Power Systems.

[12]  Kalyanmoy Deb,et al.  A Hybrid Multi-objective Evolutionary Approach to Engineering Shape Design , 2001, EMO.

[13]  Jinyu Wen,et al.  Power system load modeling by learning based on system measurements , 2003 .

[14]  G. Shackshaft,et al.  General-purpose model of power-system loads , 1977 .

[15]  Zhao Yang Dong,et al.  Power system dynamic load identification and stability , 2000, PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409).

[16]  Ping Ju,et al.  Nonlinear dynamic load modelling: model and parameter estimation , 1996 .

[17]  Takashi Hiyama,et al.  Artificial neural network based dynamic load modeling , 1997 .

[18]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[19]  Joe H. Chow,et al.  Investigation of the effects of load models and generator voltage regulators on voltage stability , 1994 .

[20]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[21]  F. S. van der Merwe,et al.  Induction motor parameter estimation through an output error technique , 1994 .

[22]  L. L. Lai,et al.  Generator Parameter Identification Using Evolutionary Programming , 1996 .

[23]  P. Kundur,et al.  Power system stability and control , 1994 .

[24]  C. W. Taylor,et al.  Model validation for the August 10, 1996 WSCC system outage , 1999 .

[25]  D.T. Westwick,et al.  A Multistage Algorithm for Identification of Nonlinear Aggregate Power System Loads , 2007, IEEE Transactions on Power Systems.

[26]  C. W. Taylor,et al.  Load representation for dynamic performance analysis , 1993 .

[27]  Hsiao-Dong Chiang,et al.  Dynamic load models in power systems using the measurement approach , 1993 .

[28]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.