Protein Condensation: Kinetic Pathways to Crystallization and Disease

Preface 1. Introduction 2. Globular protein structure 3. Experimental methods 4. Thermodynamics and statistical mechanics 5. Protein-protein interactions 6. Theoretical studies of equilibrium 7. Nucleation theory 8. Experimental studies of nucleation 9. Lysozyme 10. Some other globular proteins 11. Membrane proteins 12. Crystallins and cataracts 13. Sickle hemoglobin and sickle cell anemia 14, Alzheimer's disease Index.

[1]  P. Vekilov,et al.  Are Nucleation Kinetics of Protein Crystals Similar to Those of Liquid Droplets , 2000 .

[2]  F. Ferrone,et al.  Nonideality and the nucleation of sickle hemoglobin. , 2000, Biophysical journal.

[3]  D. Kashchiev Solution of the non-steady state problem in nucleation kinetics , 1969 .

[4]  G. Benedek,et al.  Phase separation in aqueous solutions of lens gamma-crystallins: special role of gamma s. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Vekilov,et al.  Control of protein crystal nucleation around the metastable liquid-liquid phase boundary. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[7]  F. Coenders,et al.  Three classes of sulfhydryl group in bovine alpha-crystallin according to reactivity to various reagents. , 1978, Biochimica et biophysica acta.

[8]  M. Delaye,et al.  Short-range order of crystallin proteins accounts for eye lens transparency , 1983, Nature.

[9]  David L. Stokes,et al.  Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution , 1998, Nature.

[10]  D. Norman,et al.  Molecular chaperones: Small heat shock proteins in the limelight , 1999, Current Biology.

[11]  S. Woelki,et al.  A modified Poisson–Boltzmann equation , 2000 .

[12]  D A Bennett,et al.  State-specific projections through 2025 of Alzheimer disease prevalence , 2004, Neurology.

[13]  B. Ninham,et al.  Ion Binding and Ion Specificity: The Hofmeister Effect and Onsager and Lifshitz Theories , 1997 .

[14]  Xueyu Song,et al.  An Inhomogeneous Model of Protein Dielectric Properties: Intrinsic Polarizabilities of Amino Acids , 2002 .

[15]  L. DeLucas,et al.  Protein crystal growth in microgravity review of large scale temperature induction method: Bovine insulin, human insulin and human α-interferon , 1997 .

[16]  M. Vitek,et al.  Tau is essential to β-amyloid-induced neurotoxicity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Calculation of phase diagrams for aqueous protein solutions , 2001 .

[18]  Broide,et al.  Using phase transitions to investigate the effect of salts on protein interactions. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  F. N. Braun Adhesion and liquid–liquid phase separation in globular protein solutions , 2002 .

[20]  Alexander McPherson,et al.  Preparation and analysis of protein crystals , 1982 .

[21]  N. Chayen,et al.  Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Alexander McPherson,et al.  Crystallization of satellite tobacco mosaic virus. I: Nucleation phenomena , 1993 .

[23]  S. Younkin,et al.  Correlative Memory Deficits, Aβ Elevation, and Amyloid Plaques in Transgenic Mice , 1996, Science.

[24]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[25]  Enhancement of the nucleation of protein crystals by the presence of an intermediate phase: a kinetic model , 2003 .

[26]  F. Ferrone,et al.  A model for the sickle hemoglobin fiber using both mutation sites , 2000, Protein science : a publication of the Protein Society.

[27]  Computer simulation of the phase behavior of a model membrane protein: Annexin V , 2002 .

[28]  Xueyu Song,et al.  The van der Waals interaction between protein molecules in an electrolyte solution. , 2004, The Journal of chemical physics.

[29]  D. Pagan,et al.  A finite-size scaling study of a model of globular proteins. , 2003, The Journal of chemical physics.

[30]  D. Leckband,et al.  Intermolecular forces in biology , 2001, Quarterly Reviews of Biophysics.

[31]  N. Go,et al.  Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions. , 2009 .

[32]  J. Horwitz Alpha-crystallin can function as a molecular chaperone. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Josephs,et al.  Crystallization of deoxyhemoglobin S by fiber alignment and fusion. , 1979, Journal of molecular biology.

[34]  Frederick George Donnan,et al.  Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology , 1995 .

[35]  A. Ducruix,et al.  Protein interactions as seen by solution X-ray scattering prior to crystallogenesis , 1996 .

[36]  H. Dintzis,et al.  STUDIES OF MOLECULAR INTERACTION IN ISOIONIC PROTEIN SOLUTIONS BY LIGHT-SCATTERING. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[37]  S. N. Timasheff,et al.  Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  W. Poon,et al.  Kinetics from free-energy landscapes - how to turn phase diagrams into kinetic maps , 2000 .

[39]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[40]  G. Vanderkooi,et al.  Biological membrane structure. 3. The lattice structure of membranous cytochrome oxidase. , 1972, Biochimica et biophysica acta.

[41]  Hugh D. Young,et al.  Statistical Treatment of Experimental Data. , 1964 .

[42]  L. Fox,et al.  Antiserum to lens antigens immunostains Müller glia cells in the neural retina. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[43]  V. Talanquer Nucleation in a simple model for protein solutions with anisotropic interactions. , 2005, The Journal of chemical physics.

[44]  K. Gubbins,et al.  Phase equilibria of associating fluids of spherical and chain molecules , 1988 .

[45]  G. Wistow Possible tetramer-based quaternary structure for alpha-crystallins and small heat shock proteins. , 1993, Experimental eye research.

[46]  Roberto Piazza,et al.  Interactions and phase transitions in protein solutions , 2000 .

[47]  E. Ruckenstein,et al.  The polarization model for hydration/double layer interactions: the role of the electrolyte ions. , 2004, Advances in colloid and interface science.

[48]  P. Wilding,et al.  Protein solubility: phase separation in arachin-salt-water systems. , 2009, International journal of peptide and protein research.

[49]  A. Schechter,et al.  Molecular and cellular pathogenesis of hemoglobin SC disease. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Boer The influence of van der Waals' forces and primary bonds on binding energy, strength and orientation, with special reference to some artificial resins , 1936 .

[51]  J. Rasaiah,et al.  Upper bounds on free energies in terms of hard-sphere results , 1970 .

[52]  D. Nicholson,et al.  Computer simulation and the statistical mechanics of adsorption , 1982 .

[53]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[54]  J. Prausnitz,et al.  Thermodynamic properties of aqueous .alpha.-chymotrypsin solution from membrane osmometry measurements , 1992 .

[55]  D. Ben‐Amotz,et al.  Progress in thermodynamic perturbation theory and self-consistent Ornstein–Zernike approach relevant to structural-arrest problems , 2004 .

[56]  P. Schurtenberger,et al.  Binary liquid phase separation and critical phenomena in a protein/water solution. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Siezen,et al.  The Quaternary Structure of Bovine α‐Crystallin , 1979 .

[58]  B. Shenoy,et al.  Cross-linked protein crystals for vaccine delivery. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[59]  B. U. Felderhof,et al.  Diffusion of interacting Brownian particles , 1978 .

[60]  D. Oxtoby Homogeneous nucleation: theory and experiment , 1992 .

[61]  D. Ben‐Amotz,et al.  Hard sphere perturbation theory for fluids with soft-repulsive-core potentials. , 2004, The Journal of chemical physics.

[62]  P. Vachette,et al.  Interactions in solution of a large oligomeric protein , 1999 .

[63]  Evgenii Mikhailovich Lifshitz,et al.  Statistical physics (in Russian) , 1964 .

[64]  J. Bowie,et al.  Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. , 2002, Journal of molecular biology.

[65]  V. Ingram Abnormal human haemoglobins. , 1958, Proceedings of the Royal Society of Medicine.

[66]  G. Benedek,et al.  Solid-liquid phase boundaries of lens protein solutions. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[67]  A. Minton Non-ideality and the thermodynamics of sickle-cell hemoglobin gelation. , 1977, Journal of molecular biology.

[68]  A. Tardieu,et al.  Catching the PEG-induced attractive interaction between proteins , 2002, The European physical journal. E, Soft matter.

[69]  M S Turner,et al.  Twisted protein aggregates and disease: the stability of sickle hemoglobin fibers. , 2003, Physical review letters.

[70]  D. Stigter,et al.  Interactions of highly charged colloidal cylinders with applications to double‐stranded DNA , 1977 .

[71]  J. Hofrichter,et al.  Sickle cell hemoglobin polymerization. , 1990, Advances in protein chemistry.

[72]  David Turnbull,et al.  Rate of Nucleation in Condensed Systems , 1949 .

[73]  D. Leckband,et al.  Measurements of attractive forces between proteins and end-grafted poly(ethylene glycol) chains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[74]  J. Carver,et al.  A possible chaperone-like quaternary structure for alpha-crystallin. , 1994, Experimental eye research.

[75]  D. Rice,et al.  Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. , 1997, Journal of molecular biology.

[76]  C B Muratov Theory of domain patterns in systems with long-range interactions of Coulomb type. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  D. Frenkel,et al.  Fluid-fluid coexistence in colloidal systems with short-ranged strongly directional attraction , 2003 .

[78]  J. C. Campbell,et al.  A re-examination of the organ specificity of lens antigens. , 1968, Experimental eye research.

[79]  Bruno H. Zimm,et al.  Application of the Methods of Molecular Distribution to Solutions of Large Molecules , 1946 .

[80]  S. Fujime,et al.  [Dynamic light-scattering]. , 1985, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[81]  M. Wertheim,et al.  Thermodynamic perturbation theory of polymerization , 1987 .

[82]  L. Belloni Electrostatic interactions in colloidal solutions: Comparison between primitive and one‐component models , 1986 .

[83]  J. Kirkwood,et al.  Forces between Protein Molecules in Solution Arising from Fluctuations in Proton Charge and Configuration. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[84]  S. Edelstein,et al.  Three-dimensional reconstruction of the 14-filament fibers of hemoglobin S. , 1979, Journal of molecular biology.

[85]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[86]  J. D. Gunton,et al.  Homogeneous Nucleation , 1999 .

[87]  K C Zoon,et al.  Interferons and their actions. , 1987, Annual review of biochemistry.

[88]  A. Irbäck,et al.  Three-helix-bundle protein in a Ramachandran model. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[89]  David R. Nelson,et al.  Dislocation-mediated melting in two dimensions , 1979 .

[90]  A. Spector,et al.  Age-dependent changes in the structure of alpha crystallin. , 1971, Investigative ophthalmology.

[91]  J. Grigsby Diffusivities of lysozyme in aqueous MgCl_2 solutions from dynamic light-scattering data: effect of protein and salt concentrations , 2000 .

[92]  George D. J. Phillies,et al.  Excess chemical potential of dilute solutions of spherical polyelectrolytes , 1974 .

[93]  J. Frenkel Statistical Theory of Condensation Phenomena , 1939 .

[94]  P. B. Warren Simple models for charge and salt effects in protein crystallization , 2002, cond-mat/0201418.

[95]  P. B. Warren,et al.  On the electrical double layer contribution to the interfacial tension of protein crystals , 2002, cond-mat/0206067.

[96]  G. Benedek,et al.  Oxidation of gamma II-crystallin solutions yields dimers with a high phase separation temperature. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[97]  J. Bindels,et al.  A Model for the Architecture of α-Crystallin , 1979 .

[98]  F. Boué,et al.  Lysozyme-lysozyme interactions in under- and super-saturated solutions: a simple relation between the second virial coefficients in H2O and D2O , 1997 .

[99]  F. Bonneté,et al.  Interest of the normalized second virial coefficient and interaction potentials for crystallizing large macromolecules. , 2002, Acta crystallographica. Section D, Biological crystallography.

[100]  J. García de la Torre,et al.  Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications , 1981, Quarterly Reviews of Biophysics.

[101]  D. Oxtoby,et al.  A general relation between the nucleation work and the size of the nucleus in multicomponent nucleation , 1994 .

[102]  L. Tsui,et al.  Gamma-crystallins of the human eye lens: expression analysis of five members of the gene family , 1987, Molecular and cellular biology.

[103]  G. Benedek,et al.  Static structure factor and collective diffusion of globular proteins in concentrated aqueous solution , 1996 .

[104]  Andrzej Kolinski,et al.  Discretized model of proteins , 1999 .

[105]  J. Newman,et al.  McMillan–Mayer solution thermodynamics for a protein in a mixed solvent , 2001 .

[106]  B. Pitard,et al.  Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. , 1995, Biochimica et biophysica acta.

[107]  T. Lubensky,et al.  Principles of condensed matter physics , 1995 .

[108]  J B Heymann,et al.  2D crystallization of membrane proteins: rationales and examples. , 1998, Journal of structural biology.

[109]  M. Caffrey Editorial overview: Membrane form and function in finer focus , 2002 .

[110]  Fumio Oosawa,et al.  On Interaction between Two Bodies Immersed in a Solution of Macromolecules , 1954 .

[111]  C. Hall,et al.  α‐Helix formation: Discontinuous molecular dynamics on an intermediate‐resolution protein model , 2001, Proteins.

[112]  C. Zukoski,et al.  Effects of polyethylene glycol on protein interactions , 2000 .

[113]  N E Chayen,et al.  Porous silicon: an effective nucleation-inducing material for protein crystallization. , 2001, Journal of molecular biology.

[114]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[115]  D. Selkoe Folding proteins in fatal ways , 2003, Nature.

[116]  L. Verlet,et al.  Perturbation Theory and Equation of State for Fluids , 1969 .

[117]  A. Kolomeisky,et al.  Kinetics of two-step nucleation of crystals. , 2005, The Journal of chemical physics.

[118]  J. Prausnitz,et al.  Molecular thermodynamics of aqueous two-phase systems for bioseparations , 1988 .

[119]  C. Hall,et al.  An experimental and theoretical study of phase transitions in the polystyrene latex and hydroxyethylcellulose system , 1986 .

[120]  D. Kofke Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line , 1993 .

[121]  E. Baker,et al.  Hydrogen bonding in globular proteins. , 1984, Progress in biophysics and molecular biology.

[122]  Murray,et al.  Experimental observation of two-stage melting in a classical two-dimensional screened Coulomb system. , 1987, Physical review letters.

[123]  Role of solvent for globular proteins in solution. , 2005, The Journal of chemical physics.

[124]  B. Ninham,et al.  Specific ion effects: why DLVO theory fails for biology and colloid systems. , 2001, Physical review letters.

[125]  Christine Slingsby,et al.  Crystal structure and assembly of a eukaryotic small heat shock protein , 2001, Nature Structural Biology.

[126]  R. Richter,et al.  On the kinetics of adsorption and two-dimensional self-assembly of annexin A5 on supported lipid bilayers. , 2005, Biophysical journal.

[127]  R. Netz Water and ions at interfaces , 2004 .

[128]  Barry W. Ninham,et al.  Contributions from Dispersion and Born Self-Free Energies to the Solvation Energies of Salt Solutions , 2004 .

[129]  S. Veesler,et al.  Solubility and prenucleation of aprotinin (BPTI) molecules in sodium chloride solutions , 1994 .

[130]  H. Narang High‐Resolution Electron Microscopic Analysis of the Amyloid Fibril in Alzheimer's Disease , 1980, Journal of neuropathology and experimental neurology.

[131]  P. Jollès,et al.  High temperature crystallization of lysozyme: An example of phase transition , 1972, FEBS letters.

[132]  K. Shukla Phase equilibria and thermodynamic properties of hard core Yukawa fluids of variable range from simulations and an analytical theory , 2000 .

[133]  B. Ninham,et al.  Specific ion effects in solutions of globular proteins: comparison between analytical models and simulation. , 2005, Journal of Physical Chemistry B.

[134]  A. Minton Excluded volume as a determinant of macromolecular structure and reactivity , 1981 .

[135]  Johnson,et al.  Evidence of hexatic phase formation in two-dimensional Lennard-Jones binary arrays. , 1996, Physical Review B (Condensed Matter).

[136]  K. Schweizer,et al.  Microscopic theory of polymer-mediated interactions between spherical particles , 1998 .

[137]  Hartmut Michel,et al.  Membrane protein crystallization , 2003 .

[138]  S. Lewith,et al.  Zur Lehre von der Wirkung der Salze , 1887, Archiv für experimentelle Pathologie und Pharmakologie.

[139]  H. Kang,et al.  A perturbation theory of classical equilibrium fluids , 1985 .

[140]  C. Zukoski,et al.  Depletion interactions and protein crystallization , 2001 .

[141]  Theory and simulation of short-range models of globular protein solutions , 2004, cond-mat/0407335.

[142]  W. D. de Jong,et al.  Post-translational modifications of eye lens crystallins: crosslinking, phosphorylation and deamidation. , 1988, Advances in experimental medicine and biology.

[143]  L. Takemoto,et al.  Localization of the chaperone binding site. , 1993, Biochemical and biophysical research communications.

[144]  M. Wertheim,et al.  Fluids with highly directional attractive forces. IV. Equilibrium polymerization , 1986 .

[145]  P. Argos,et al.  Structural homology of lens crystallins. A method to detect protein structural homology from primary sequences. , 1983, European journal of biochemistry.

[146]  B. Seed,et al.  Isolation of cDNAs of scrapie-modulated RNAs by subtractive hybridization of a cDNA library. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[147]  R. Josephs,et al.  Polymorphism of sickle cell hemoglobin fibers. , 1976, Journal of molecular biology.

[148]  H. Stanley,et al.  Discrete molecular dynamics simulations of peptide aggregation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[149]  B. Ninham,et al.  Surface Tension of Electrolytes: Specific Ion Effects Explained by Dispersion Forces , 2001 .

[150]  Daan Frenkel,et al.  Determination of phase diagrams for the hard-core attractive Yukawa system , 1994 .

[151]  M. Kirkitadze,et al.  Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[152]  C. Hall,et al.  Statistical‐mechanical model of protein precipitation by nonionic polymer , 1990 .

[153]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[154]  B. Ackerson Correlations for interacting Brownian particles , 1976 .

[155]  A. Lenhoff,et al.  A consistent experimental and modeling approach to light-scattering studies of protein-protein interactions in solution. , 2005, Biophysical journal.

[156]  H. Christenson NON-DLVO FORCES BETWEEN SURFACES -SOLVATION, HYDRATION AND CAPILLARY EFFECTS , 1988 .

[157]  G. Benedek,et al.  Theory of transparency of the eye. , 1971, Applied optics.

[158]  M. Desmadril,et al.  Repulsive interparticle interactions in a denatured protein solution revealed by small angle neutron scattering , 1998, FEBS letters.

[159]  Richard A. Friesner,et al.  Parallel implementation of a protein structure refinement algorithm , 1996 .

[160]  M Karplus,et al.  The contribution of vibrational entropy to molecular association. The dimerization of insulin. , 1994, Journal of molecular biology.

[161]  Neer Asherie,et al.  Liquid-solid transition in nuclei of protein crystals , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[162]  R. E. Hay,et al.  cDNA Clones encoding bovine γ-crystallins , 1987 .

[163]  B. Ninham,et al.  Ion specificity of micelles explained by ionic dispersion forces , 2002 .

[164]  J. Prausnitz,et al.  Ion-specific effects in the colloid-colloid or protein-protein potential of mean force: Role of salt-macroion van der waals interactions , 2004 .

[165]  B. Ninham,et al.  The present state of affairs with Hofmeister effects , 2004 .

[166]  V. Cherezov,et al.  Crystallization screens: compatibility with the lipidic cubic phase for in meso crystallization of membrane proteins. , 2001, Biophysical journal.

[167]  D. Frenkel,et al.  Enhancement of protein crystal nucleation by critical density fluctuations. , 1997, Science.

[168]  B. Ninham,et al.  The double-layer interaction in asymmetric electrolytes , 1990 .

[169]  S. Yau,et al.  Molecular-level thermodynamic and kinetic parameters for the self-assembly of apoferritin molecules into crystals. , 2000, Journal of molecular biology.

[170]  H. Stanley,et al.  Folding events in the 21-30 region of amyloid beta-protein (Abeta) studied in silico. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[171]  Brigita Urbanc,et al.  In silico study of amyloid β-protein folding and oligomerization , 2004 .

[172]  B. Ninham,et al.  Hofmeister Effects in pH Measurements: Role of Added Salt and Co-ions , 2003 .

[173]  R. Jaenicke,et al.  Three‐dimensional model and quaternary structure of the human eye lens protein γS‐crystallin based on β‐ and γ‐crystallin X‐ray coordinates and ultracentrifugation , 1994, Protein science : a publication of the Protein Society.

[174]  P. Cremer,et al.  On the mechanism of the hofmeister effect. , 2004, Journal of the American Chemical Society.

[175]  Daan Frenkel,et al.  COMPUTER-SIMULATION STUDY OF FREE-ENERGY BARRIERS IN CRYSTAL NUCLEATION , 1992 .

[176]  D. Rapaport Molecular dynamics simulation of polymer chains with excluded volume , 1978 .

[177]  J. Rosenbusch,et al.  Isolation and crystallization of bacterial porin. , 1986, Methods in enzymology.

[178]  G. Benedek,et al.  Thermodynamic analysis of the growth of sodium dodecyl sulfate micelles , 1980 .

[179]  S. Edwards,et al.  Hofmeister effects in colloid science and biology explained by dispersion forces: analytic results for the double layer interaction , 2004 .

[180]  Christos N. Likos,et al.  EFFECTIVE INTERACTIONS IN SOFT CONDENSED MATTER PHYSICS , 2001 .

[181]  W. Stockmayer Light Scattering in Multi‐Component Systems , 1950 .

[182]  D. Frenkel,et al.  Onset of heterogeneous crystal nucleation in colloidal suspensions , 2004, Nature.

[183]  Kinetics of phase transitions in the presence of an intermediate metastable state: a generic model , 2005 .

[184]  H. Posch,et al.  “What is ‘liquid’? Understanding the states of matter” , 1998 .

[185]  J. Piatigorsky,et al.  Expression of the murine alpha B-crystallin gene is not restricted to the lens , 1989, Molecular and cellular biology.

[186]  C Argote-Olivera,et al.  [Sickle-cell anemia]. , 1977, La Prensa medica mexicana.

[187]  G. Glenner,et al.  Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. , 1984, Biochemical and biophysical research communications.

[188]  J. T. Dunnen,et al.  Concerted and divergent evolution within the rat γ-crystallin gene family , 1986 .

[189]  S. Trokel The physical basis for transparency of the crystalline lens. , 1962, Investigative ophthalmology.

[190]  R. Stough Solvent and mutation effects on the nucleation of amyloid-protein folding , 2005 .

[191]  Different tools to study interaction potentials in gamma-crystallin solutions: relevance to crystal growth. , 1997, Acta crystallographica. Section D, Biological crystallography.

[192]  L T Chylack,et al.  Quantitative detection of the molecular changes associated with early cataractogenesis in the living human lens using quasielastic light scattering. , 1987, Current eye research.

[193]  J. Hofrichter,et al.  Supersaturation in sickle cell hemoglobin solutions. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[194]  B. Ninham,et al.  Why the Properties of Proteins in Salt Solutions Follow a Hofmeister Series , 2004 .

[195]  M. Carpineti,et al.  Metastability and supersaturation limit for lysozyme crystallization , 2004 .

[196]  N. C. Price,et al.  How to study proteins by circular dichroism. , 2005, Biochimica et biophysica acta.

[197]  B. D. Coleman,et al.  Light Scattering Investigation of Charge Fluctuations in Isoionic Serum Albumin Solutions1 , 1957 .

[198]  Lars Onsager,et al.  The Surface Tension of Debye‐Hückel Electrolytes , 1934 .

[199]  M. L. Grant Nonuniform Charge Effects in Protein−Protein Interactions , 2001 .

[200]  John I. Clark,et al.  Small heat-shock proteins and their potential role in human disease. , 2000, Current opinion in structural biology.

[201]  Crystal Nucleation Rates for Particles Experiencing Short-Range Attractions: Applications to Proteins. , 2000, Journal of colloid and interface science.

[202]  J. Ravey,et al.  Application of the adhesive sphere model to the structure of colloidal suspensions , 1989 .

[203]  Anthony G. Lee,et al.  How lipids interact with an intrinsic membrane protein: the case of the calcium pump. , 1998, Biochimica et biophysica acta.

[204]  The effect of the range of interaction on the phase diagram of a globular protein. , 2005, The Journal of chemical physics.

[205]  A. Lentsch Proteomics in Practice: A Laboratory Manual of Proteome Analysis , 2003 .

[206]  T. Creighton Proteins: Structures and Molecular Properties , 1986 .

[207]  W. William Wilson,et al.  Correlation of second virial coefficients and solubilities useful in protein crystal growth , 1999 .

[208]  M. Goldberg,et al.  Participation of hemoglobins A and F in polymerization of sickle hemoglobin. , 1977, The Journal of biological chemistry.

[209]  S. Egelhaaf,et al.  Protein crystallization: scaling of charge and salt concentration in lysozyme solutions , 2000 .

[210]  F. Ferrone,et al.  Crowding and the polymerization of sickle hemoglobin , 2004, Journal of molecular recognition : JMR.

[211]  Vicente A Talanquer,et al.  Crystal nucleation in the presence of a metastable critical point , 1998 .

[212]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Solutions. I , 1951 .

[213]  S. Inouye,et al.  Structural similarity of a developmentally regulated bacterial spore coat protein to beta gamma-crystallins of the vertebrate eye lens. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[214]  D. Teplow,et al.  Quasielastic light scattering for protein assembly studies. , 2005, Methods in molecular biology.

[215]  D. Kashchiev On the relation between nucleation work, nucleus size, and nucleation rate , 1982 .

[216]  B. Jap,et al.  Three-dimensional electron diffraction of PhoE porin to 2.8 A resolution. , 1990, Journal of molecular biology.

[217]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[218]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[219]  Tejero,et al.  van der Waals theory for solids. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[220]  V. Stojanoff,et al.  Repartitioning of NaCl and protein impurities in lysozyme crystallization. , 1996, Acta crystallographica. Section D, Biological crystallography.

[221]  J. Drenth,et al.  Effect of molecular anisotropy on the nucleation of lysozyme , 2003 .

[222]  George B. Benedek,et al.  Kinetic theory of fibrillogenesis of amyloid β-protein , 1997 .

[223]  B. Fine Light scattering by aqueous protein solutions that exhibit liquid-liquid phase separation , 1994 .

[224]  J. Linderberg On dispersion forces , 1962 .

[225]  S. Yau,et al.  Quasi-planar nucleus structure in apoferritin crystallization , 2000, Nature.

[226]  U Aebi,et al.  2D crystallization: from art to science. , 1992, Ultramicroscopy.

[227]  K. Kelton Crystal Nucleation in Liquids and Glasses , 1991 .

[228]  Barry W. Ninham,et al.  On Progress in Forces Since the DLVO Theory , 1999 .

[229]  C. Zukoski,et al.  Protein interactions and phase behavior: Sensitivity to the form of the pair potential , 1999 .

[230]  C. Zukoski,et al.  Crystal nucleation rates for particles experiencing anisotropic interactions , 2002 .

[231]  B. Ninham,et al.  Hofmeister effects in membrane biology: the role of ionic dispersion potentials. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[232]  G. Benedek,et al.  Observation of liquid–liquid phase separation for eye lens γS-crystallin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[233]  M. Delaye,et al.  Molecular basis of eye lens transparency. Osmotic pressure and X-ray analysis of alpha-crystallin solutions. , 1989, Journal of molecular biology.

[234]  J. Trojanowski,et al.  The Levels of Soluble versus Insoluble Brain Aβ Distinguish Alzheimer's Disease from Normal and Pathologic Aging , 1999, Experimental Neurology.

[235]  A. Vrij,et al.  Interactions in mixtures of colloidal silica spheres and polystyrene molecules in cyclohexane , 1981 .

[236]  J. King,et al.  Crystal cataracts: Human genetic cataract caused by protein crystallization , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[237]  F. Bonneté,et al.  X-ray scattering studies of Aspergillus flavus urate oxidase: towards a better understanding of PEG effects on the crystallization of large proteins. , 2002, Acta crystallographica. Section D, Biological crystallography.

[238]  Dimo Kashchiev,et al.  Nucleation : basic theory with applications , 2000 .

[239]  J. Hofrichter Ligand binding and the gelation of sickle cell hemoglobin. , 1979, Journal of molecular biology.

[240]  P. Harrison,et al.  The ferritins: molecular properties, iron storage function and cellular regulation. , 1996, Biochimica et biophysica acta.

[241]  G. Benedek,et al.  Binary-liquid phase separation of lens protein solutions. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[242]  A. McPherson,et al.  Current approaches to macromolecular crystallization. , 1990, European journal of biochemistry.

[243]  R. Edalji,et al.  Solubilization of hemoglobin S by other hemoglobins. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[244]  R. J. Baxter Percus-Yevick Equation for Hard Spheres with Surface Adhesion , 1968 .

[245]  R. Zwanzig High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases , 1954 .

[246]  Samir Kumar Pal,et al.  Dynamics of water in biological recognition. , 2004, Chemical reviews.

[247]  P. Schurtenberger,et al.  Modeling equilibrium clusters in lysozyme solutions , 2006, cond-mat/0607264.

[248]  George Jackson,et al.  Phase equilibria of associating fluids , 2006 .

[249]  R. Siezen Reflections on the internal primary, secondary and tertiary structure homology of the eye lens proteins α‐,β‐ and γ‐crystallin , 1981 .

[250]  A George,et al.  Predicting protein crystallization from a dilute solution property. , 1994, Acta crystallographica. Section D, Biological crystallography.

[251]  G. Glenner,et al.  Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. , 1984, Biochemical and biophysical research communications.

[252]  Shen,et al.  bcc Symmetry in the Crystal-Melt Interface of Lennard-Jones Fluids Examined through Density Functional Theory. , 1996, Physical review letters.

[253]  S. Edelstein A Plausible Molecular Model for the 14-Filament Fibers of Sickle Cell Hemoglobin , 1981 .

[254]  B. Ninham,et al.  Hofmeister effects in surface tension of aqueous electrolyte solution. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[255]  G. Wistow Domain structure and evolution in α‐crystallins and small heat‐shock proteins , 1985 .

[256]  C P Govardhan,et al.  Crosslinking of enzymes for improved stability and performance. , 1999, Current opinion in biotechnology.

[257]  H. Mizuno,et al.  New crystal form of recombinant murine interferon-beta. , 1989, The Journal of biological chemistry.

[258]  S. Edelstein,et al.  Double strand packing in hemoglobin S fibers. , 1993, Journal of molecular biology.

[259]  J. Graw The crystallins: genes, proteins and diseases. , 1997, Biological chemistry.

[260]  K. Kato,et al.  Immunoreactive alpha A crystallin in rat non-lenticular tissues detected with a sensitive immunoassay method. , 1991, Biochimica et biophysica acta.

[261]  T. Aerts,et al.  A small-angle X-ray solution scattering study of bovine α-crystallin , 2000 .

[262]  E. Ruckenstein,et al.  Oscillatory and Monotonic Polarization. The Polarization Contribution to the Hydration Force , 2001 .

[263]  G. Benedek,et al.  Observation of protein diffusivity in intact human and bovine lenses with application to cataract. , 1975, Investigative ophthalmology.

[264]  S. Finet,et al.  Controlling biomolecular crystallization by understanding the distinct effects of PEGs and salts on solubility. , 2003, Methods in enzymology.

[265]  J. Barker,et al.  Perturbation Theory of Fluids at High Temperatures , 1970 .

[266]  B. Ghetti,et al.  Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17: A New Group of Tauopathies , 1998, Brain pathology.

[267]  H. Christenson,et al.  Adhesion and solvation forces between surfaces in liquids studied by vapor-phase experiments , 1993 .

[268]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[269]  A. McPherson,et al.  Light scattering investigations of protein and virus crystal growth: ferritin, apoferritin and satellite tobacco mosaic virus , 1993 .

[270]  H. Christenson,et al.  Direct measurement of the force between solid surfaces in a polar liquid , 1983 .

[271]  W. Döring,et al.  Kinetic Treatment of the Nucleation in Supersaturated Vapors , 1954 .

[272]  O. Velev,et al.  Why is the osmotic second virial coefficient related to protein crystallization , 1999 .

[273]  P. Tarazona,et al.  A model for density oscillations in liquids between solid walls , 1985 .

[274]  J. Hofrichter,et al.  Thermodynamics of gelation of sickle cell deoxyhemoglobin. , 1977, Journal of molecular biology.

[275]  D. Blankschtein,et al.  Liquid-liquid phase separation of aqueous lysozyme solutions: effects of pH and salt identity , 1990 .

[276]  J. Drenth Principles of protein x-ray crystallography , 1994 .

[277]  H. M. Schaink,et al.  Determination of the osmotic second virial coefficient and the dimerization of β-lactoglobulin in aqueous solutions with added salt at the isoelectric point , 2000 .

[278]  P. Vekilov,et al.  Direct Determination of the Nucleation Rates of Protein Crystals , 1999 .

[279]  T. Iwatsubo,et al.  Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43) , 1994, Neuron.

[280]  Electrostatic analogy for surfactant assemblies , 1992 .

[281]  Marc L. Pusey,et al.  The solubility of the tetragonal form of hen egg white lysozyme from pH 4.0 to 5.4 , 1991 .

[282]  C. Zukoski,et al.  Ergodic and non-ergodic phase transitions in globular protein suspensions. , 2003, Faraday discussions.

[283]  D Thirumalai,et al.  Cooperativity in protein folding: from lattice models with sidechains to real proteins. , 1998, Folding & design.

[284]  P. Argos,et al.  Knowledge‐based protein secondary structure assignment , 1995, Proteins.

[285]  S. Watowich,et al.  Analysis of the intermolecular contacts within sickle hemoglobin fibers: effect of site-specific substitutions, fiber pitch, and double-strand disorder. , 1993, Journal of structural biology.

[286]  Pablo G. Debenedetti,et al.  Metastable Liquids: Concepts and Principles , 1996 .

[287]  S. Younkin,et al.  An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. , 1994, Science.

[288]  C. Masters,et al.  Amyloid plaque core protein in Alzheimer disease and Down syndrome. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[289]  B. Derjaguin,et al.  Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes , 1993 .

[290]  E. Lifshitz The theory of molecular attractive forces between solids , 1956 .

[291]  S. Sun,et al.  Reduced representation model of protein structure prediction: Statistical potential and genetic algorithms , 1993, Protein science : a publication of the Protein Society.

[292]  R. Kornberg,et al.  Two-dimensional crystallization technique for imaging macromolecules, with application to antigen–antibody–complement complexes , 1983, Nature.

[293]  Anatoly B Kolomeisky,et al.  Nucleation of ordered solid phases of proteins via a disordered high-density state: phenomenological approach. , 2005, The Journal of chemical physics.

[294]  A. Lenhoff,et al.  Calculation of short-range interactions between proteins. , 1999, Biophysical chemistry.

[295]  P. Vekilov,et al.  Smooth transition from metastability to instability in phase separating protein solutions. , 2004, The Journal of chemical physics.

[296]  Charles F. Zukoski,et al.  Nanoparticle Crystal Nucleation: Influence of Solution Conditions , 2002 .

[297]  R. Nagel,et al.  Liquid–liquid separation in solutions of normal and sickle cell hemoglobin , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[298]  Nicole R. Buan,et al.  The Identity of Proteins Associated with a Small Heat Shock Protein during Heat Stress in Vivo Indicates That These Chaperones Protect a Wide Range of Cellular Functions* , 2004, Journal of Biological Chemistry.

[299]  S. Finet,et al.  The Hofmeister effect as seen by SAXS in protein solutions , 2004 .

[300]  L. Tsui,et al.  Structural and evolutionary relationships among five members of the human gamma-crystallin gene family , 1985, Molecular and cellular biology.

[301]  Abraham M Lenhoff,et al.  Rapid measurement of protein osmotic second virial coefficients by self-interaction chromatography. , 2002, Biophysical journal.

[302]  Grégoire Nicolis,et al.  Theoretical evidence for a dense fluid precursor to crystallization. , 2006, Physical review letters.

[303]  F. Rosenberger,et al.  Interactions in undersaturated and supersaturated lysozyme solutions: Static and dynamic light scattering results , 1995 .

[304]  M. Wertheim Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres , 1986 .

[305]  Jacob N. Israelachvili,et al.  Thin film studies using multiple-beam interferometry , 1973 .

[306]  E. Kaler,et al.  Quantitative imaging by confocal scanning fluorescence microscopy of protein crystallization via liquid-liquid phase separation. , 2005, Acta crystallographica. Section D, Biological crystallography.

[307]  Walz,et al.  Electron Crystallography of Two-Dimensional Crystals of Membrane Proteins. , 1998, Journal of structural biology.

[308]  J. Skolnick,et al.  Monte carlo simulations of protein folding. II. Application to protein A, ROP, and crambin , 1994, Proteins.

[309]  C. Hall,et al.  Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[310]  Zamora,et al.  Phase behavior of small attractive colloidal particles. , 1996, Physical review letters.

[311]  Daniel Picot,et al.  Strategies for crystallizing membrane proteins , 1996 .

[312]  C. Zukoski,et al.  DEPLETION INTERACTIONS IN THE PROTEIN LIMIT : EFFECTS OF POLYMER DENSITY FLUCTUATIONS , 1999 .

[313]  Crystal nucleation for a model of globular proteins. , 2003, The Journal of chemical physics.

[314]  B. Ninham,et al.  Why forces between proteins follow different Hofmeister series for pH above and below pI. , 2005, Biophysical chemistry.

[315]  R. Nagel,et al.  Are protein crystallization mechanisms relevant to understanding and control of polymerization of deoxyhemoglobin S , 2001 .

[316]  Y. Zeldovich,et al.  10. On the Theory of New Phase Formation. Cavitation , 1992 .

[317]  Fumio Oosawa,et al.  Interaction between particles suspended in solutions of macromolecules , 1958 .

[318]  R. Siezen,et al.  Stepwise dissociation/denaturation and reassociation/renaturation of bovine alpha-crystallin in urea and guanidine hydrochloride: sedimentation, fluorescence, near-ultraviolet and far-ultraviolet circular dichroism studies. , 1982, Experimental eye research.

[319]  G. Gilliland A biological macromolecule crystallization database: A basis for a crystallization strategy , 1988 .

[320]  A. McPherson Crystallization of Biological Macromolecules , 1999 .

[321]  R. Sear Phase behavior of a simple model of globular proteins , 1999, cond-mat/9904426.

[322]  Xiang-yang Liu,et al.  Protein interactions in undersaturated and supersaturated solutions: a study using light and x-ray scattering. , 2003, Biophysical journal.

[323]  Dominic M. Walsh,et al.  Deciphering the Molecular Basis of Memory Failure in Alzheimer's Disease , 2004, Neuron.

[324]  H. C. Longuet-Higgins,et al.  The statistical thermodynamics of multicomponent systems , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[325]  V. Ingram,et al.  A Specific Chemical Difference Between the Globins of Normal Human and Sickle-Cell Anæmia Hæmoglobin , 1956, Nature.

[326]  J. Prausnitz,et al.  Cloud-point temperatures for lysozyme in electrolyte solutions: effect of salt type, salt concentration and pH. , 2001, Biophysical chemistry.

[327]  H. Kang,et al.  A perturbation theory of classical solids , 1986 .

[328]  S. Bose,et al.  Structure and stability of γ-crystallins. I. Spectroscopic evaluation of secondary and tertiary structure in solution , 1985 .

[329]  S. Prusiner,et al.  Shattuck lecture--neurodegenerative diseases and prions. , 2001, The New England journal of medicine.

[330]  K. B. Ward,et al.  Crystal structure of sickle-cell deoxyhemoglobin at 5 A resolution. , 1975, Journal of molecular biology.

[331]  Paolo De Los Rios,et al.  Hydrophobic Interaction Model for Upper and Lower Critical Solution Temperatures , 2003 .

[332]  E. Arnold,et al.  Application of temperature control strategies to the growth of hen egg-white lysozyme crystals , 1996 .

[333]  S J Watowich,et al.  Intermolecular contacts within sickle hemoglobin fibers , 1991, Other Conferences.

[334]  R. Morimoto,et al.  Stress–inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection , 1998, Nature Biotechnology.

[335]  Jan Drenth,et al.  Understanding protein crystallization on the basis of the phase diagram , 1999 .

[336]  L. Wadsö,et al.  A calorimetric study of phospholipid hydration. Simultaneous monitoring of enthalpy and free energy , 2000 .

[337]  R. Terry THE FINE STRUCTURE OF NEUROFIBRILLARY TANGLES IN ALZHEIMER'S DISEASE , 1963, Journal of neuropathology and experimental neurology.

[338]  P. Lansbury,et al.  The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. , 1993, Biochemistry.

[339]  H. C. Andersen,et al.  Relationship between the Hard-Sphere Fluid and Fluids with Realistic Repulsive Forces , 1971 .

[340]  X. Li,et al.  Interaction and aggregation of lens crystallins. , 1991, Experimental eye research.

[341]  Simple model of membrane proteins including solvent. , 2005, The Journal of chemical physics.

[342]  S. Yau,et al.  Solvent entropy contribution to the free energy of protein crystallization. , 2002, Acta crystallographica. Section D, Biological crystallography.

[343]  V. Berejnov,et al.  Measurements of protein-protein interactions by size exclusion chromatography. , 2003, Biophysical journal.

[344]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[345]  J. Prausnitz,et al.  Lysozyme Net Charge and Ion Binding in Concentrated Aqueous Electrolyte Solutions , 1999 .

[346]  M. Hutton Missense and splice site mutations in tau associated with FTDP-17: Multiple pathogenic mechanisms , 2001, Neurology.

[347]  S. Edelstein,et al.  Three-dimensional reconstruction of the fibres of sickle cell haemoglobin , 1978, Nature.

[348]  R. Piazza,et al.  Protein interactions near crystallization: a microscopic approach to the Hofmeister series , 2000 .

[349]  O. Velev,et al.  Protein interactions in solution characterized by light and neutron scattering: comparison of lysozyme and chymotrypsinogen. , 1998, Biophysical journal.

[350]  J. Skolnick,et al.  Computer simulations of the properties of the α2, α2C, and α2D de novo designed helical proteins , 2000 .

[351]  E. Waisman The radial distribution function for a fluid of hard spheres at high densities , 1973 .

[352]  Neer Asherie,et al.  Protein crystallization and phase diagrams. , 2004, Methods.

[353]  P. Vekilov,et al.  Mechanisms of homogeneous nucleation of polymers of sickle cell anemia hemoglobin in deoxy state. , 2004, Journal of molecular biology.

[354]  P. Vekilov,et al.  Evidence for non-DLVO hydration interactions in solutions of the protein apoferritin. , 2000, Physical review letters.

[355]  M. Pusey,et al.  Orthorhombic lysozyme solubility. , 1994, Acta crystallographica. Section D, Biological crystallography.

[356]  N. Chayen,et al.  Is lysozyme really the ideal model protein , 2001 .

[357]  H. Zoghbi,et al.  Glutamine repeats and neurodegeneration. , 2000, Annual review of neuroscience.

[358]  J. Herrick,et al.  Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. 1910. , 2001, The Yale journal of biology and medicine.

[359]  J. Hofrichter Kinetics of sickle hemoglobin polymerization. III. Nucleation rates determined from stochastic fluctuations in polymerization progress curves. , 1986, Journal of molecular biology.

[360]  J. Wouters,et al.  Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. , 2005, Current medicinal chemistry.

[361]  Benedek,et al.  Phase Diagram of Colloidal Solutions. , 1996, Physical review letters.

[362]  P. Wolynes,et al.  Folding dynamics with nonadditive forces: A simulation study of a designed helical protein and a random heteropolymer , 1999 .

[363]  J. Langer Statistical theory of the decay of metastable states , 1969 .

[364]  D. Selkoe,et al.  Deciphering the genetic basis of Alzheimer's disease. , 2002, Annual review of genomics and human genetics.

[365]  Frédéric Cardinaux,et al.  Equilibrium cluster formation in concentrated protein solutions and colloids , 2004, Nature.

[366]  P. L. San Biagio,et al.  Spinodal lines and Flory-Huggins free-energies for solutions of human hemoglobins HbS and HbA. , 1991, Biophysical journal.

[367]  I. Nicholl,et al.  Chaperone activity of alpha‐crystallins modulates intermediate filament assembly. , 1994, The EMBO journal.

[368]  G. Pellicane,et al.  Phase coexistence in a DLVO model of globular protein solutions , 2003 .

[369]  M. Kidd ALZHEIMER'S DISEASE--AN ELECTRON MICROSCOPICAL STUDY. , 1964, Brain : a journal of neurology.

[370]  G. Benedek,et al.  Aeolotopic interactions of globular proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[371]  P. Vekilov,et al.  Spinodal for the solution-to-crystal phase transformation. , 2005, The Journal of chemical physics.

[372]  M. Karplus,et al.  Folding thermodynamics of a model three-helix-bundle protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[373]  F. Bonneté,et al.  Liquid-Liquid Phase Separations in Urate Oxidase/PEG Mixtures: Characterization and Implications for Protein Crystallization. , 2004, The journal of physical chemistry. B.

[374]  Giuseppe Pellicane,et al.  Microscopic determination of the phase diagrams of lysozyme and γ-crystallin solutions , 2004 .

[375]  S. Yau,et al.  Temperature-independent solubility and interactions between apoferritin monomers and dimers in solution , 2001 .

[376]  S. Finet,et al.  Second virial coefficient: variations with lysozyme crystallization conditions , 1999 .

[377]  H. Edelhoch,et al.  Light Scattering in Solutions of Serum Albumin: Effects of Charge and Ionic Strength1,2 , 1950 .

[378]  D. Kirschner,et al.  On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[379]  Light scattering and phase behavior of lysozyme-poly(ethylene glycol) mixtures. , 2005, Physical review letters.

[380]  B. Ninham,et al.  Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. , 1971, Journal of theoretical biology.

[381]  S. Marčelja,et al.  McMillan-Mayer theory for solvent effects in inhomogeneous systems: Calculation of interaction pressure in aqueous electrical double layers , 2001 .

[382]  J. Prausnitz,et al.  Protein-protein interactions in concentrated electrolyte solutions: Hofmeister-series effects , 2002 .

[383]  C. H. Walker The Hydrophobic Effect: Formation of Micelles and Biological Membranes , 1981 .

[384]  G. Feher,et al.  Protein crystallization. , 1996, Annual review of physical chemistry.

[385]  R. Leapman,et al.  A structural model for Alzheimer's β-amyloid fibrils based on experimental constraints from solid state NMR , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[386]  D. J. Harrington,et al.  The high resolution crystal structure of deoxyhemoglobin S. , 1997, Journal of molecular biology.

[387]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[388]  Franz Rosenberger,et al.  Liquid-Liquid Phase Separation in Supersaturated Lysozyme Solutions and Associated Precipitate Formation/Crystallization , 1997 .

[389]  T. Przybycien,et al.  Self-interaction chromatography: a tool for the study of protein-protein interactions in bioprocessing environments. , 2000, Biotechnology and bioengineering.

[390]  H. Christenson,et al.  Direct Measurements of the Force between Hydrophobic Surfaces in Water , 2001 .

[391]  M. Rapoport,et al.  PD98059 Prevents Neurite Degeneration Induced by Fibrillar β‐Amyloid in Mature Hippocampal Neurons , 2000, Journal of neurochemistry.

[392]  J. Bowie Stabilizing membrane proteins. , 2001, Current opinion in structural biology.

[393]  W. Kunz,et al.  Role of polarizability in molecular interactions in ion solvation , 2004 .

[394]  B. Ninham,et al.  Van der Waals forces. Special characteristics in lipid-water systems and a general method of calculation based on the Lifshitz theory. , 1970, Biophysical journal.

[395]  J. Haines,et al.  Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. , 1993, Science.

[396]  J. Prausnitz,et al.  Protein-protein and protein-salt interactions in aqueous protein solutions containing concentrated electrolytes. , 1998, Biotechnology and bioengineering.

[397]  V. Ingram,et al.  Gene Mutations in Human Hæmoglobin: the Chemical Difference Between Normal and Sickle Cell Hæmoglobin , 1957, Nature.

[398]  B. Ninham,et al.  Role of Co-Ion Specificity and Dissolved Atmospheric Gas in Colloid Interaction , 2000 .

[399]  P. Vachette,et al.  Spherical plant viruses: interactions in solution, phase diagrams and crystallization of brome mosaic virus. , 2001, Acta Crystallographica Section D: Biological Crystallography.

[400]  J. Rosenbusch,et al.  Molecular mechanism for the crystallization of bacteriorhodopsin in lipidic cubic phases , 2001, FEBS letters.

[401]  S. Singer,et al.  The fluid mosaic model of the structure of cell membranes. , 1972, Science.

[402]  D. Moss,et al.  Packing interactions in the eye-lens. Structural analysis, internal symmetry and lattice interactions of bovine gamma IVa-crystallin. , 1989, Journal of molecular biology.

[403]  C. Masters,et al.  Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease , 1999, Annals of neurology.

[404]  Toyoichi Tanaka,et al.  Critical Behavior of a Binary Mixture of Protein and Salt Water , 1977 .

[405]  S. Finet,et al.  α-crystallin interaction forces studied by small angle X-ray scattering and numerical simulations , 2001 .

[406]  H. Stanley,et al.  Molecular Dynamics Simulation of Amyloid β Dimer Formation , 2004, physics/0403040.

[407]  Charles F. Zukoski,et al.  Protein interactions and crystallization , 1996 .

[408]  D. Carter,et al.  Effect of microheterogeneity on horse spleen apoferritin crystallization , 1998 .

[409]  J. Carver,et al.  α-Crystallin: molecular chaperone and protein surfactant , 1994 .

[410]  J. Kirkwood,et al.  Light Scattering Arising from Composition Fluctuations in Multi‐Component Systems , 1950 .

[411]  E. Snell,et al.  Crystallization of chicken egg-white lysozyme from ammonium sulfate. , 1997, Acta crystallographica. Section D, Biological crystallography.

[412]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[413]  H. Maisel The Immunologic Specificity of Lens Antigens , 1963 .

[414]  P. Vekilov,et al.  Dense Liquid Precursor for the Nucleation of Ordered Solid Phases from Solution, Crystal Growth and Design , 2004 .

[415]  J. Rosenbusch,et al.  Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[416]  G. A. Krestov Thermodynamics of solvation : solution and dissolution, ions and solvents, structure and energetics , 1991 .

[417]  G. Fournet,et al.  Small‐Angle Scattering of X‐Rays , 1956 .

[418]  W. William Wilson,et al.  Relation between the solubility of proteins in aqueous solutions and the second virial coefficient of the solution , 1999 .

[419]  G. Benedek,et al.  Monte Carlo study of phase separation in aqueous protein solutions , 1996 .

[420]  C. T. Mörner Untersuchung der Proteїnsubstanzen in den leichtbrechenden Medien des Auges I. , 1894 .

[421]  J. Hofrichter,et al.  Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[422]  D. Rapaport Molecular dynamics study of a polymer chain in solution , 1979 .

[423]  G. Benedek,et al.  Effect of polyethylene glycol on the liquid–liquid phase transition in aqueous protein solutions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[424]  K. Goddard,et al.  The amyloid precursor protein locus and very-late-onset Alzheimer disease. , 2001, American journal of human genetics.

[425]  H. Michel,et al.  Crystallization of membrane proteins. , 1983, Current opinion in structural biology.

[426]  R. Henderson,et al.  Preparation of two-dimensional arrays from purified beef heart cytochrome c oxidase. , 1982, Biochemistry.

[427]  R. Evans,et al.  Liquids at interfaces: what can a theorist contribute? , 1990 .

[428]  Douglas J. Tobias,et al.  Molecular Structure of Salt Solutions: A New View of the Interface with Implications for Heterogeneous Atmospheric Chemistry , 2001 .

[429]  A. A. Louis,et al.  Accurate effective pair potentials for polymer solutions , 2000 .

[430]  J. Prausnitz,et al.  The role of salt–macroion van der Waals interactions in the colloid–colloid potential of mean force , 2004 .

[431]  Benedek,et al.  Observation of critical phenomena in a protein-water solution. , 1989, Physical review letters.

[432]  G. Benedek,et al.  Suppression of phase separation in bovine gamma IV crystallin solutions: effect of modification by charged versus uncharged polar groups. , 1993, Experimental eye research.

[433]  Jan Groenewold,et al.  Anomalously large equilibrium clusters of colloids , 2001 .

[434]  B. Ninham,et al.  Application of the Lifshitz Theory to the Calculation of Van der Waals Forces across Thin Lipid Films , 1969, Nature.

[435]  Ken A Dill,et al.  How ions affect the structure of water. , 2002, Journal of the American Chemical Society.

[436]  R. Sear Nucleation: theory and applications to protein solutions and colloidal suspensions , 2007 .

[437]  D. Pagan,et al.  Phase behavior of short-range square-well model. , 2004, The Journal of chemical physics.

[438]  G. Benedek,et al.  Suppression of phase separation in solutions of bovine gamma IV-crystallin by polar modification of the sulfur-containing amino acids. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[439]  Jacob Raber,et al.  Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer's disease-related cognitive deficits , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[440]  Dimiter N. Petsev,et al.  Thermodynamic Functions of Concentrated Protein Solutions from Phase Equilibria , 2003 .

[441]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[442]  W. Kegel,et al.  Colloidal cluster phases, gelation and nuclear matter , 2004 .

[443]  Competition of percolation and phase separation in a fluid of adhesive hard spheres. , 2003, Physical review letters.

[444]  A. Minton,et al.  Molecular crowding: analysis of effects of high concentrations of inert cosolutes on biochemical equilibria and rates in terms of volume exclusion. , 1998, Methods in enzymology.

[445]  Hansen,et al.  Can polymer coils Be modeled as "Soft colloids"? , 2000, Physical review letters.

[446]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[447]  V. Marchesi,et al.  Selective Solubilization of a Protein Component of the Red Cell Membrane , 1968, Science.

[448]  H. Brinkman,et al.  The Effect of Non‐Homogeneity of Molecular Weight on the Scattering of Light by High Polymer Solutions , 1949 .

[449]  B. Ninham,et al.  Range of the screened coulomb interaction in electrolytes and double layer problems , 1978 .

[450]  J. Wiencek,et al.  Static light scattering studies of OmpF porin: Implications for integral membrane protein crystallization , 2000, Protein science : a publication of the Protein Society.

[451]  K. Dill,et al.  A simple protein folding algorithm using a binary code and secondary structure constraints. , 1995, Protein engineering.

[452]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[453]  Jun Fujita,et al.  Invited review: Effects of heat and cold stress on mammalian gene expression. , 2002, Journal of applied physiology.

[454]  M. Pusey,et al.  Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions , 1999 .

[455]  J. Hofrichter,et al.  Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism. , 1980, Biophysical journal.

[456]  R. Bookchin,et al.  Ionic strength dependence of the polymer solubilities of deoxyhemoglobin S + C and S + A mixtures. , 1986, Blood.

[457]  H. Braak,et al.  Evolution of neuronal changes in the course of Alzheimer's disease. , 1998, Journal of neural transmission. Supplementum.

[458]  K. Rajaraman Alpha crystallin as a molecular chaperone : conformational studies , 2000 .

[459]  D. Frenkel,et al.  Phase behavior of a simple model for membrane proteins , 2000, cond-mat/0009274.

[460]  Alexander McPherson,et al.  Precrystallization aggregation of insulin by dynamic light scattering and comparison with canavalin , 1991 .

[461]  A. Lee,et al.  Effects of bilayer thickness on the activity of diacylglycerol kinase of Escherichia coli. , 2001, Biochemistry.

[462]  J. Skolnick,et al.  Computer simulations of de novo designed helical proteins. , 1998, Biophysical journal.

[463]  Håkan Wennerström,et al.  Role of hydration and water structure in biological and colloidal interactions , 1996, Nature.

[464]  Pieter Rein ten Wolde,et al.  Numerical calculation of the rate of crystal nucleation in a Lennard‐Jones system at moderate undercooling , 1996 .

[465]  E. Craig,et al.  Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[466]  D. Chan,et al.  The influence of discrete surface charges on the force between charged surfaces. , 2005, The Journal of chemical physics.

[467]  A. Alzheimer Uber eine eigenartige Erkrankung der Hirnrinde , 1907 .

[468]  P. Vekilov,et al.  Nucleation of Protein Crystals: Critical Nuclei, Phase Behavior, and Control Pathways , 2001 .

[469]  J. Hofrichter,et al.  Gelation of sickle cell hemoglobin in mixtures with normal adult and fetal hemoglobins. , 1979, Journal of molecular biology.

[470]  T. Odijk,et al.  Optimized Baxter model of protein solutions: electrostatics versus adhesion. , 2004, The Journal of chemical physics.

[471]  B. Ninham,et al.  Specific ion effects: why the properties of lysozyme in salt solutions follow a Hofmeister series. , 2003, Biophysical journal.

[472]  E. Kaler,et al.  The role of protein and surfactant interactions in membrane-protein crystallization. , 2005, Acta crystallographica. Section D, Biological crystallography.

[473]  Nucleation of a noncritical phase in a fluid near a critical point , 2000, cond-mat/0010154.

[474]  F. Narberhaus α-Crystallin-Type Heat Shock Proteins: Socializing Minichaperones in the Context of a Multichaperone Network , 2002, Microbiology and Molecular Biology Reviews.

[475]  P. Walter,et al.  Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. , 2001, Current opinion in cell biology.

[476]  F. Ree Equilibrium properties of high‐density fluids , 1976 .

[477]  A. Engel,et al.  Electron and atomic force microscopy of membrane proteins. , 1997, Current opinion in structural biology.

[478]  Dmitrij Frishman,et al.  STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins , 2004, Nucleic Acids Res..

[479]  A. Lenhoff,et al.  Molecular origins of osmotic second virial coefficients of proteins. , 1998, Biophysical journal.

[480]  J. Behlke,et al.  Analysis of the thermodynamic non-ideality of proteins by sedimentation equilibrium experiments. , 1999, Biophysical chemistry.

[481]  Stefano Mossa,et al.  Equilibrium cluster phases and low-density arrested disordered states: the role of short-range attraction and long-range repulsion. , 2004, Physical review letters.

[482]  D. Frenkel,et al.  Extended corresponding-states behavior for particles with variable range attractions , 2000, cond-mat/0004033.

[483]  P. Vekilov,et al.  Heterogeneity determination and purification of commercial hen egg-white lysozyme. , 1996, Acta crystallographica. Section D, Biological crystallography.

[484]  S. Edelstein,et al.  Patterns in the quinary structures of proteins. Plasticity and inequivalence of individual molecules in helical arrays of sickle cell hemoglobin and tubulin. , 1980, Biophysical journal.

[485]  A. Alagic,et al.  Chemical cross-linking and protein-protein interactions-a review with illustrative protocols. , 2004, Bioorganic chemistry.

[486]  Franz Hofmeister,et al.  Zur Lehre von der Wirkung der Salze , 1888, Archiv für experimentelle Pathologie und Pharmakologie.

[487]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[488]  R. Craver,et al.  Separation of hemoglobin variants with similar charge by capillary isoelectric focusing: Value of isoelectric point for identification of common and uncommon hemoglobin variants , 2000, Electrophoresis.

[489]  J. Hardy,et al.  The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics , 2009 .

[490]  Oleg Galkin,et al.  On the Methods of Determination of Homogeneous Nucleation Rates of Protein Crystals , 2003 .

[491]  M. Muir Physical Chemistry , 1888, Nature.

[492]  Yoshinori Fujiyoshi,et al.  Atomic model of plant light-harvesting complex by electron crystallography , 1994, Nature.

[493]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[494]  M. Behe,et al.  Mixed gelation theory. Kinetics, equilibrium and gel incorporation in sickle hemoglobin mixtures. , 1979, Journal of molecular biology.

[495]  S. Bhat,et al.  Complete nucleotide sequence of a cDNA derived from calf lens gamma-crystallin mRNA: presence of Alu I-like DNA sequences. , 1984, DNA.

[496]  J. Jenkins,et al.  The growth and characterization of membrane protein crystals , 1986 .

[497]  Y. Ihara,et al.  Presence of sodium dodecyl sulfate-stable amyloid beta-protein dimers in the hippocampus CA1 not exhibiting neurofibrillary tangle formation. , 1999, The American journal of pathology.

[498]  J. Borreguero,et al.  Mechanism for the α‐helix to β‐hairpin transition , 2003, Proteins.

[499]  F. Ferrone,et al.  Heterogeneous nucleation and crowding in sickle hemoglobin: an analytic approach. , 2002, Biophysical journal.

[500]  Benny D. Freeman,et al.  Molecular Dynamics for Polymeric Fluids Using Discontinuous Potentials , 1997 .

[501]  A. Ducruix,et al.  Relative effectiveness of various ions on the solubility and crystal growth of lysozyme. , 1989, The Journal of biological chemistry.

[502]  K. Freed,et al.  Statistical mechanics; new concepts, new problems, new applications , 1972 .

[503]  D. Craik,et al.  THE SOLUTION STRUCTURE OF AMYLOID BETA-PEPTIDE (1-40) IN A WATER-MICELLE ENVIRONMENT. IS THE MEMBRANE-SPANNING DOMAIN WHERE WE THINK IT IS? NMR, 10 STRUCTURES , 1998 .

[504]  Evgenii Mikhailovich Lifshitz,et al.  General theory of van der Waals' forces , 1961 .

[505]  M. Delaye,et al.  Eye lens proteins and transparency: from light transmission theory to solution X-ray structural analysis. , 1988, Annual review of biophysics and biophysical chemistry.

[506]  R. Josephs,et al.  Macrofiber structure and the dynamics of sickle cell hemoglobin crystallization. , 1984, Journal of molecular biology.

[507]  Andrew Schofield,et al.  Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization , 2001, Science.

[508]  S. Veesler,et al.  Comparison of solubilities and molecular interactions of BPTI molecules giving different polymorphs , 1997 .

[509]  J. Corless,et al.  Two-dimensional rhodopsin crystals from disk membranes of frog retinal rod outer segments. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[510]  James S. Langer,et al.  Theory of the condensation point , 1967 .

[511]  E. Arnold,et al.  Enthalpy of crystallization of hen egg-white lysozyme , 1996 .

[512]  O. Lambert,et al.  Use of detergents in two-dimensional crystallization of membrane proteins. , 2000, Biochimica et biophysica acta.

[513]  T. Kodadek,et al.  Chemistry for the analysis of protein-protein interactions: rapid and efficient cross-linking triggered by long wavelength light. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[514]  Xueyu Song The Extent of Anisotropic Interactions Between Protein Molecules in Electrolyte Solutions , 2003 .

[515]  P. Vekilov,et al.  Effects of microheterogeneity in hen egg-white lysozyme crystallization. , 1998, Acta crystallographica. Section D, Biological crystallography.

[516]  Catherine Vénien-Bryan,et al.  Two-dimensional Crystallization of Membrane Proteins , 2005 .

[517]  David A. Kofke,et al.  Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation , 1993 .

[518]  G. Benedek,et al.  Cataract as a protein condensation disease: the Proctor Lecture. , 1997, Investigative ophthalmology & visual science.

[519]  S. Glotzer,et al.  Self-Assembly of Patchy Particles. , 2004, Nano letters.