Steady-State Spectroscopy to Single Out the Contact Ion Pair in Excited-State Proton Transfer.

Despite the outstanding relevance of proton transfer reactions, investigations of the solvent dependence on the elementary step are scarce. We present here a probe system of a pyrene-based photoacid and a phosphine oxide, which forms stable hydrogen-bonded complexes in aprotic solvents of a broad polarity range. By using a photoacid, an excited-state proton transfer (ESPT) along the hydrogen bond can be triggered by a photon and observed via fluorescence spectroscopy. Two emission bands could be identified and assigned to the complexed photoacid (CPX) and the hydrogen-bonded ion pair (HBIP) by a solvatochromism analysis based on the Lippert-Mataga model. The latter indicates that the difference in the change of the permanent dipole moment of the two species upon excitation is ∼3 D. This implies a displacement of the acidic hydrogen by ∼65 pm, which is in quantitative agreement with a change of the hydrogen bond configuration from O-H···O to -O···H-O+.

[1]  Pragya Verma,et al.  Propyl acetate/butyronitrile mixture is ideally suited for investigating the effect of dielectric stabilization on (photo)chemical reactions , 2020, RSC advances.

[2]  Anne Clasen,et al.  Kinetics of Palladium(0)‐Allyl Interactions in the Tsuji‐Trost Reaction, derived from Single‐Molecule Fluorescence Microscopy , 2020, ChemCatChem.

[3]  Anzar Khan,et al.  Photoinduced Proton-Transfer Polymerization: A Practical Synthetic Tool for Soft Lithography Applications. , 2020, Journal of the American Chemical Society.

[4]  M. Fayer,et al.  Bulk-like and Interfacial Water Dynamics in Nafion Fuel Cell Membranes Investigated with Ultrafast Nonlinear IR Spectroscopy. , 2019, The journal of physical chemistry. B.

[5]  Anne Clasen,et al.  Surface Preparation for Single-Molecule Chemistry. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[6]  E. Vauthey,et al.  Influence of Solvent Relaxation on Ultrafast Excited-State Proton Transfer to Solvent. , 2017, The journal of physical chemistry letters.

[7]  Christopher D. Sanborn,et al.  Observation of Photovoltaic Action from Photoacid-Modified Nafion Due to Light-Driven Ion Transport. , 2017, Journal of the American Chemical Society.

[8]  P. Li,et al.  Excited-state proton transfer of 4-hydroxyl-1, 8-naphthalimide derivatives: A combined experimental and theoretical investigation , 2016 .

[9]  Sun-Young Park,et al.  Photoinduced strong acid–weak base reactions in a polar aprotic solvent , 2016, Methods and applications in fluorescence.

[10]  G. Jung,et al.  Biexponential photon antibunching: recombination kinetics within the Förster-cycle in DMSO. , 2016, Physical chemistry chemical physics : PCCP.

[11]  Antje Sommer,et al.  Principles Of Fluorescence Spectroscopy , 2016 .

[12]  A. M. Brouwer,et al.  Complexes of a naphthalimide photoacid with organic bases, and their excited-state dynamics in polar aprotic organic solvents. , 2015, Physical chemistry chemical physics : PCCP.

[13]  P. Chou,et al.  Photoinduced proton transfer in chemistry and biology. , 2015, The journal of physical chemistry. B.

[14]  G. Jung,et al.  Solvent dependence of excited-state proton transfer from pyranine-derived photoacids. , 2014, Physical chemistry chemical physics : PCCP.

[15]  M. Mosquera,et al.  Moderately Strong Photoacid Dissociates in Alcohols with High Transient Concentration of the Proton-Transfer Contact Pair. , 2014, The journal of physical chemistry letters.

[16]  I. Riemann,et al.  Highly photostable “super”-photoacids for ultrasensitive fluorescence spectroscopy , 2014, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[17]  S. Kovalenko,et al.  Dissociation of a strong acid in neat solvents: diffusion is observed after reversible proton ejection inside the solvent shell. , 2013, The journal of physical chemistry. B.

[18]  G. Jung,et al.  Solvatochromism of pyranine-derived photoacids. , 2013, Physical chemistry chemical physics : PCCP.

[19]  S. Kovalenko,et al.  Ultrafast proton transfer to solvent: molecularity and intermediates from solvation- and diffusion-controlled regimes. , 2007, Journal of the American Chemical Society.

[20]  A. Goun,et al.  Deprotonation dynamics and stokes shift of pyranine (HPTS). , 2007, The journal of physical chemistry. A.

[21]  Jens Dreyer,et al.  Sequential Proton Transfer Through Water Bridges in Acid-Base Reactions , 2005, Science.

[22]  D. Huppert,et al.  Testing the three step excited state proton transfer model by the effect of an excess proton. , 2005, The journal of physical chemistry. A.

[23]  S. Kovalenko,et al.  Ultrafast solvation of N-methyl-6-quinolone probes local IR spectrum. , 2005, Angewandte Chemie.

[24]  D. Huppert,et al.  Excited-state proton transfer: indication of three steps in the dissociation and recombination process. , 2005, The journal of physical chemistry. A.

[25]  D. Pines,et al.  Bimodal proton transfer in acid-base reactions in water. , 2004, The Journal of chemical physics.

[26]  Th. Förster Fluoreszenzspektrum und Wasserstoffionen-konzentration , 1949, Naturwissenschaften.

[27]  Matteo Rini,et al.  Real-Time Observation of Bimodal Proton Transfer in Acid-Base Pairs in Water , 2003, Science.

[28]  V. Wintgens,et al.  Solvent and temperature effects on the deactivation pathways of excited ion pairs produced via photoinduced proton transfer. , 2003, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[29]  Christian Laurence,et al.  The Empirical Treatment of Solvent-Solute Interactions: 15 Years of .pi.* , 1994 .

[30]  N. Agmon,et al.  Geminate recombination in excited-state proton-transfer reactions: Numerical solution of the Debye-Smoluchowski equation with backreaction and comparison with experimental results , 1988 .

[31]  Michael H. Abraham,et al.  Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, .pi.*, .alpha., and .beta., and some methods for simplifying the generalized solvatochromic equation , 1983 .

[32]  L. Kuleshova,et al.  Hydrogen bond length in homomolecular organic crystals , 1981 .

[33]  R. Taft,et al.  The solvatochromic comparison method. 6. The .pi.* scale of solvent polarities , 1977 .

[34]  R. Taft,et al.  The solvatochromic comparison method. 2. The .alpha.-scale of solvent hydrogen-bond donor (HBD) acidities , 1976 .

[35]  R. Taft,et al.  The solvatochromic comparison method. I. The .beta.-scale of solvent hydrogen-bond acceptor (HBA) basicities , 1976 .

[36]  Manfred Eigen,et al.  Proton Transfer, Acid-Base Catalysis, and Enzymatic Hydrolysis. Part I: ELEMENTARY PROCESSES†‡ , 1964 .

[37]  W. C. Hamilton The Structure of Solids , 1962 .

[38]  A. Weller Protolytische Reaktionen angeregter Oxyverbindungen , 1958 .

[39]  A. Weller Allgemeine Basenkatalyse bei der elektrolytischen Dissoziation angeregter Naphthole , 1954 .

[40]  A. Weller Quantitative Untersuchungen der Fluoreszenzumwandlung bei Naphtholen , 1952 .

[41]  Th. Förster Elektrolytische Dissoziation angeregter Moleküle , 1950, Zeitschrift für Elektrochemie und angewandte physikalische Chemie.