Likelihood Based Confidence Intervals for the Tail Index

For the estimation of the tail index of a heavy tailed distribution, one of the well-known estimators is the Hill estimator (Hill, 1975). One obvious way to construct a confidence interval for the tail index is via the normal approximation of the Hill estimator. In this paper we apply both the empirical likelihood method and the parametric likelihood method to obtaining confidence intervals for the tail index. Our limited simulation study indicates that the normal approximation method is worse than the other two methods in terms of coverage probability, and the empirical likelihood method and the parametric likelihood method are comparable.

[1]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[2]  P. Hall,et al.  Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .

[3]  László Viharos,et al.  Asymptotic normality of least-squares estimators of tail indices , 1997 .

[4]  I. Weissman Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .

[5]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[6]  Min Tsao,et al.  A new method of calibration for the empirical loglikelihood ratio , 2004 .

[7]  L. Haan,et al.  Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .

[8]  Armelle Guillou,et al.  A diagnostic for selecting the threshold in extreme value analysis , 2001 .

[9]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[10]  L. Peng,et al.  Confidence intervals for the tail index , 2001 .

[11]  Jón Dańıelsson,et al.  Tail Index and Quantile Estimation with Very High Frequency Data , 1997 .

[12]  L. de Haan,et al.  Penultimate Approximation for Hill's Estimator , 2001 .

[13]  Sidney I. Resnick,et al.  Discussion of the Danish Data on Large Fire Insurance Losses , 1997, ASTIN Bulletin.

[14]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[15]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[16]  Jan Beirlant,et al.  Tail Index Estimation and an Exponential Regression Model , 1999 .

[17]  S. Resnick,et al.  Extreme Value Theory as a Risk Management Tool , 1999 .

[18]  Holger Drees,et al.  Refined Pickands estimators of the extreme value index , 1995 .

[19]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .

[20]  Peter Hall,et al.  On the estimation of extreme tail probabilities , 1997 .

[21]  Peter Hall,et al.  Methodology and algorithms of empirical likelihood , 1990 .

[22]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .

[23]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[24]  Paul Deheuvels,et al.  Kernel Estimates of the Tail Index of a Distribution , 1985 .

[25]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[26]  J. Teugels,et al.  Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics , 1996 .

[27]  Liang Peng,et al.  Estimating the First‐ and Second‐Order Parameters of a Heavy‐Tailed Distribution , 2004 .

[28]  A. McNeil Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory , 1997, ASTIN Bulletin.

[29]  Liang Peng,et al.  Comparison of tail index estimators , 1998 .

[30]  Thomas J. DiCiccio,et al.  Empirical Likelihood is Bartlett-Correctable , 1991 .