Optimal reactive power dispatch with wind power integrated using group search optimizer with intraspecific competition and lévy walk

This short communication presents a nature-inspired optimization algorithm, group search optimizer with intraspecific competition and levy walk (GSOICLW). The mechanism of intraspecific competition (IC) and the searching strategy of levy walk (LW) are incorporated to the original group search optimizer (GSO) algorithm. It has been proved that GSOICLW shows a significant improvement to GSO after its test against standard benchmark functions.

[1]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[2]  Michael D. Vose,et al.  The simple genetic algorithm - foundations and theory , 1999, Complex adaptive systems.

[3]  Q. H. Wu,et al.  Optimal reactive power dispatch using an adaptive genetic algorithm , 1997 .

[4]  G. S. Piperagkas,et al.  Stochastic PSO-based heat and power dispatch under environmental constraints incorporating CHP and w , 2011 .

[5]  Henry Wu Power System Optimal Reactive Dispatch Using Evolutionary Programming , 1995 .

[6]  Simon Benhamou,et al.  How many animals really do the Lévy walk? , 2008, Ecology.

[7]  Zhe Chen,et al.  Probabilistic capacity of a grid connected wind farm , 2005 .

[8]  D. Bolnick Intraspecific competition favours niche width expansion in Drosophila melanogaster , 2001, Nature.

[9]  Daniel I Bolnick,et al.  Intraspecific competition drives increased resource use diversity within a natural population , 2007, Proceedings of the Royal Society B: Biological Sciences.

[10]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[11]  K. Conradsen,et al.  Review of Weibull Statistics for Estimation of Wind Speed Distributions , 1984 .

[12]  M S Li,et al.  Bacterial foraging algorithm with varying population , 2010, Biosyst..

[13]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[14]  Feng Liu,et al.  Group Search Optimization for Applications in Structural Design , 2011 .

[15]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[16]  He Jian Dynamic Economic Dispatch Considering Wind Power Penetration Based on Wind Speed Forecasting and Stochastic Programming , 2009 .

[17]  F. Nogales,et al.  Risk-constrained self-scheduling of a thermal power producer , 2004, IEEE Transactions on Power Systems.

[18]  Hui Sun,et al.  Optimal wind–thermal coordination dispatch based on risk reserve constraints , 2011 .

[19]  Zhen Ji,et al.  Optimal power flow using group search optimizer with intraspecific competition and lévy walk , 2013, 2013 IEEE Symposium on Swarm Intelligence (SIS).

[20]  R. Adapa,et al.  The quadratic interior point method solving power system optimization problems , 1994 .

[21]  M. Shahidehpour,et al.  Security-Constrained Unit Commitment With Volatile Wind Power Generation , 2008, IEEE Transactions on Power Systems.

[22]  Q. Henry Wu,et al.  Paired-bacteria optimiser - A simple and fast algorithm , 2011, Inf. Process. Lett..

[23]  Chen Wang,et al.  Optimal Power Flow Solution Incorporating Wind Power , 2012, IEEE Systems Journal.

[24]  Hans-Georg Beyer The simple genetic algorithm-foundations and theory [Book Reviews] , 2000, IEEE Transactions on Evolutionary Computation.

[25]  Alan A. Berryman,et al.  Principles of Population Dynamics and Their Application , 2020 .

[26]  Huei-Lin Chang,et al.  Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs , 2010 .

[27]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[28]  Q. Henry Wu,et al.  Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior , 2009, IEEE Transactions on Evolutionary Computation.

[29]  Liang Gao,et al.  An improved fruit fly optimization algorithm for continuous function optimization problems , 2014, Knowl. Based Syst..

[30]  S. M. Shahidehpour,et al.  Risk and profit in self-scheduling for GenCos , 2004, IEEE Transactions on Power Systems.

[31]  Wen-Tsao Pan,et al.  A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example , 2012, Knowl. Based Syst..

[32]  Mehdi Vakilian,et al.  Stochastic unit commitment of wind farms integrated in power system , 2010 .

[33]  A. Brett,et al.  The Characteristics of Wind Velocity that Favor the Fitting of a Weibull Distribution in Wind Speed Analysis , 1984 .

[34]  V. Miranda,et al.  Economic dispatch model with fuzzy wind constraints and attitudes of dispatchers , 2005, IEEE Transactions on Power Systems.

[35]  S. M. Shahidehpour,et al.  Linear reactive power optimization in a large power network using the decomposition approach , 1990 .

[36]  A. Nicholson An outline of the dynamics of animal populations. , 1954 .

[37]  Maria Grazia De Giorgi,et al.  Assessment of the benefits of numerical weather predictions in wind power forecasting based on stati , 2011 .

[38]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[39]  W.L. Kling,et al.  Impacts of Wind Power on Thermal Generation Unit Commitment and Dispatch , 2007, IEEE Transactions on Energy Conversion.

[40]  Lingfeng Wang,et al.  Balancing risk and cost in fuzzy economic dispatch including wind power penetration based on particle swarm optimization , 2008 .

[41]  J.H. Zhang,et al.  Probabilistic Load Flow Evaluation With Hybrid Latin Hypercube Sampling and Cholesky Decomposition , 2009, IEEE Transactions on Power Systems.

[42]  Chaohua Dai,et al.  Seeker Optimization Algorithm for Optimal Reactive Power Dispatch , 2009, IEEE Transactions on Power Systems.

[43]  R. MacLean,et al.  Adaptive radiation in microbial microcosms. , 2005, Journal of evolutionary biology.

[44]  Ramin Rajabioun,et al.  Cuckoo Optimization Algorithm , 2011, Appl. Soft Comput..

[45]  T. Y. Ji,et al.  Stochastic Optimal Power Flow using a Paired-Bacteria Optimizer , 2010, IEEE PES General Meeting.

[46]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, ANTS Conference.

[47]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[48]  Tsung-Ying Lee Optimal Spinning Reserve for a Wind-Thermal Power System Using EIPSO , 2007, IEEE Transactions on Power Systems.

[49]  F. Bouffard,et al.  Stochastic security for operations planning with significant wind power generation , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[50]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[51]  S. Granville Optimal reactive dispatch through interior point methods , 1994 .

[52]  Olivier François,et al.  An evolutionary strategy for global minimization and its Markov chain analysis , 1998, IEEE Trans. Evol. Comput..

[53]  W. R. Hargraves,et al.  Methods for Estimating Wind Speed Frequency Distributions. , 1978 .

[54]  Norman L Carreck,et al.  Honeybees perform optimal scale-free searching flights when attempting to locate a food source , 2007, Journal of Experimental Biology.

[55]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .