Medical image modality classification and retrieval

The aim of this paper is to explore different medical image modality and retrieval strategies. First, we analyze how current state-of-the art image representations (bags of visual words and Fisher Vectors) perform when we use them for medical modality classification. Then we integrated these representations in a content based image retrieval system and tested on a medical image retrieval task. Finally, in both cases, we explored how the performance can be improved if we combine visual with textual information. To show the performance of different systems we compared our approaches to the systems participated at the Medical Task of the latest ImageClef Challenge [16].

[1]  Adrian Popescu Télécom Bretagne at ImageCLEF WikipediaMM 2010 , 2010, CLEF.

[2]  Gabriela Csurka,et al.  Crossing textual and visual content in different application scenarios , 2009, Multimedia Tools and Applications.

[3]  Florent Perronnin,et al.  Fisher Kernels on Visual Vocabularies for Image Categorization , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Henning Müller,et al.  Fusion Techniques for Combining Textual and Visual Information Retrieval , 2010, ImageCLEF.

[5]  Christian Lovis,et al.  The Use of MedGIFT and EasyIR for ImageCLEF 2005 , 2005, CLEF.

[6]  Antoine Geissbühler,et al.  A Review of Content{Based Image Retrieval Systems in Medical Applications { Clinical Bene(cid:12)ts and Future Directions , 2022 .

[7]  Rudolf Hanka,et al.  A review of intelligent content-based indexing and browsing of medical images , 1999 .

[8]  Barbara Caputo,et al.  An SVM Confidence-Based Approach to Medical Image Annotation , 2008, CLEF.

[9]  Henning Müller,et al.  Overview of the CLEF 2009 Medical Image Retrieval Track , 2009, CLEF.

[10]  Alexandros Stougiannis,et al.  IPL at ImageCLEF 2010 , 2010, CLEF.

[12]  Jing Liu,et al.  Medical Image Annotation and Retrieval Using Visual Features , 2006, CLEF.

[13]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[14]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[15]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[16]  Gabriela Csurka,et al.  XRCE's Participation in Wikipedia Retrieval, Medical Image Modality Classification and Ad-hoc Retrieval Tasks of ImageCLEF 2010 , 2010, CLEF.

[17]  Paul Clough,et al.  ImageCLEF: Experimental Evaluation in Visual Information Retrieval , 2010 .

[18]  Henning Müller,et al.  The Medical Image Retrieval Task , 2010, ImageCLEF.

[19]  Florent Perronnin,et al.  Large-scale image retrieval with compressed Fisher vectors , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Steven Bedrick,et al.  Improving Retrieval Using External Annotations: OHSU at ImageCLEF 2010 , 2010, CLEF.

[21]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[22]  Éric Gaussier,et al.  Lexical Entailment for Information Retrieval , 2006, ECIR.

[23]  Ana M. García-Serrano,et al.  Experiences at ImageCLEF 2010 using CBIR and TBIR Mixing Information Approaches , 2010, CLEF.

[24]  Yen-Wei Chen,et al.  ImageCLEF 2010 Modality Classification in Medical Image Retrieval: Multiple Feature Fusion with Normalized Kernel Function , 2010, CLEF.