Turbulence and fire-spotting effects into wild-land fire simulators

[1]  J. Trelles,et al.  Fire-induced Winds In The 20 October 1991 Oakland Hills Fire , 1997 .

[2]  Homa Karimabadi,et al.  A new asynchronous methodology for modeling of physical systems: breaking the curse of courant condition , 2005 .

[3]  Qingyan Chen,et al.  Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces , 2007 .

[4]  Luca Massidda,et al.  Modelling turbulence effects in wildland fire propagation by the randomized level-set method , 2013 .

[5]  W. Jahn,et al.  Forecasting wind-driven wildfires using an inverse modelling approach , 2013 .

[6]  A. Sullivan Wildland surface fire spread modelling, 1990–2007. 3: Simulation and mathematical analogue models , 2009 .

[7]  J. Quintiere Principles of Fire Behavior , 1997 .

[8]  Allen G. Hunt,et al.  A new conceptual model for forest fires based on percolation theory , 2008, Complex..

[9]  G. Richards A General Mathematical Framework for Modeling Two-Dimensional Wildland Fire Spread , 1995 .

[10]  Haihui Wang Analysis on Downwind Distribution of Firebrands Sourced from a Wildland Fire , 2011 .

[11]  Andrea Mentrelli,et al.  The Randomized Level Set Method and an Associated Reaction-Diffusion Equation to Model Wildland Fire Propagation , 2014 .

[12]  B. Potter A dynamics based view of atmosphere-fire interactions* , 2002 .

[13]  Charly Favier Percolation model of fire dynamic , 2004 .

[14]  J. Kirkpatrick,et al.  The flammability and energy content of some important plant species and fuel components in the forests of southeastern Tasmania , 1985 .

[15]  Albert Simeoni,et al.  Experimental Procedures Characterising Firebrand Generation in Wildland Fires , 2016 .

[16]  Janice L. Coen,et al.  A Coupled AtmosphereFire Model: Convective Feedback on Fire-Line Dynamics , 1996 .

[17]  A. L. Sullivan,et al.  A review of wildland fire spread modelling, 1990-present 3: Mathematical analogues and simulation models , 2007, 0706.4130.

[18]  Gianni Pagnini,et al.  Modelling wildland fire propagation by tracking random fronts , 2013 .

[19]  P. Pernin The Great Peshtigo Fire: An Eyewitness Account , 1971 .

[20]  J. Mandel,et al.  Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011 , 2011, 1102.1343.

[21]  D. Bowman,et al.  Fuel characteristics of coastal monsoon forests, Northern Territory, Australia , 1988 .

[22]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[23]  Bernard Porterie,et al.  Experimental validation of a numerical model for the transport of firebrands , 2009 .

[24]  Gianni Pagnini Fire Spotting Effects in Wildland Fire Propagation , 2014 .

[25]  David R. Weise,et al.  Firebrands and spotting ignition in large-scale fires , 2010 .

[26]  Kai Hormann,et al.  The point in polygon problem for arbitrary polygons , 2001, Comput. Geom..

[27]  Marco T. Vilhena,et al.  Comparison between Eulerian and Lagrangian semi-analytical models to simulate the pollutant dispersion in the PBL , 2007 .

[28]  E. A. Catchpole,et al.  Modelling the spread of grass fires , 1982, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[29]  G. Richards An elliptical growth model of forest fire fronts and its numerical solution , 1990 .

[30]  J. Morgan Varner,et al.  A cellular automata model to link surface fires to firebrand lift-off and dispersal , 2013 .

[31]  David E. Keyes,et al.  Modeling wildland fire propagation with level set methods , 2007, Comput. Math. Appl..

[32]  Frank,et al.  Potential Spotting Distance from Wind-Driven Surface Fires , 2008 .

[33]  Shiyuan Zhong,et al.  First observations of turbulence generated by grass fires , 2008 .

[34]  A. C. Fernandez-Pello,et al.  Numerical study of ground-level distribution of firebrands generated by line fires , 2008 .

[35]  Samuel L. Manzello,et al.  On the development and characterization of a firebrand generator , 2008 .

[36]  Bernard P. Zeigler,et al.  Forest Fire Spread and Suppression in DEVS , 2004, Simul..

[37]  David A. Stanford,et al.  A stochastic forest fire growth model , 2009, Environmental and Ecological Statistics.

[38]  Ernesto Kofman,et al.  A Second-Order Approximation for DEVS Simulation of Continuous Systems , 2002, Simul..

[39]  Jean Baptiste Filippi,et al.  A physical model for wildland fires , 2009 .

[40]  G. Richards,et al.  The Properties of Elliptical Wildfire Growth for Time Dependent Fuel and Meteorological Conditions , 1993 .

[41]  Katepalli R. Sreenivasan,et al.  Turbulent convection at high Rayleigh numbers and aspect ratio 4 , 2006, Journal of Fluid Mechanics.

[42]  A. Gill,et al.  Fire properties and burn patterns in heterogeneous landscapes. , 2002 .

[43]  Patrick J. Pagni Causes of the 20 October 1991 Oakland Hills conflagration , 1993 .

[44]  Bernard P. Zeigler,et al.  Hierarchical, modular discrete-event modelling in an object-oriented environment , 1987 .

[45]  B. Potter Atmospheric interactions with wildland fire behaviour – I. Basic surface interactions, vertical profiles and synoptic structures , 2012 .

[46]  B. Potter Atmospheric interactions with wildland fire behaviour – II. Plume and vortex dynamics , 2012 .

[47]  Vera N. Egorova,et al.  Wildland fire propagation modelling , 2017 .

[48]  Ladislav Halada,et al.  On elliptical model for forest fire spread modeling and simulation , 2008, Math. Comput. Simul..

[49]  R. Rothermel A Mathematical Model for Predicting Fire Spread in Wildland Fuels , 2017 .

[50]  M. Finney Fire growth using minimum travel time methods , 2002 .

[51]  Mark A. Finney,et al.  Calculation of fire spread rates across random landscapes , 2003 .

[52]  M. Zendehbad,et al.  Comparison between Lagrangian and Eulerian approaches in predicting motion of micron-sized particles in laminar flows , 2014 .

[53]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[54]  K. D. Hage ON THE DISPERSION OF LARGE PARTICLES FROM A 15-M SOURCE IN THE ATMOSPHERE , 1961 .

[55]  Alexandros Dimitrakopoulos,et al.  Flammability Assessment of Mediterranean Forest Fuels , 2001 .

[56]  H. E. Anderson,et al.  Forest fuel ignitibility , 1970 .

[57]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .

[58]  Daniel Cariolle,et al.  Coupled Atmosphere‐Wildland Fire Modelling , 2009 .

[59]  Lagrangian formulation of turbulent premixed combustion. , 2011, Physical review letters.

[60]  Jean Baptiste Filippi,et al.  ForeFire: open-source code for wildland fire spread models , 2014 .

[61]  Vivien Mallet,et al.  Evaluation of forest fire models on a large observation database , 2014 .

[62]  A. Sullivan A review of wildland fire spread modelling, 1990-present, 1: Physical and quasi-physical models , 2007, 0706.3074.

[63]  Holly Ann Perryman,et al.  A mathematical model of spot fires and their management implications , 2009 .

[64]  Andrea Mentrelli,et al.  Front propagation in anomalous diffusive media governed by time-fractional diffusion , 2015, J. Comput. Phys..

[65]  Glen A. Morris,et al.  A Simple Method for Computing Spotting Distances From Wind-Driven Surface Fires , 2010 .

[66]  Homa Karimabadi,et al.  HYPERS: A unidimensional asynchronous framework for multiscale hybrid simulations , 2012, J. Comput. Phys..

[67]  Jean-Baptiste Filippi,et al.  Discrete Event Front-tracking Simulation of a Physical Fire-spread Model , 2010, Simul..

[68]  A. Sullivan,et al.  Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models , 2007, 0706.4128.

[69]  G. Pagnini,et al.  Random front propagation in fractional diffusive systems , 2015 .

[70]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[71]  A. Carlos Fernandez-Pello,et al.  Modeling transport and combustion of firebrands from burning trees , 2007 .