Host plant effects on the outcomes of defensive symbioses in the pea aphid complex

[1]  K. Oliver,et al.  Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. , 2019, Current opinion in insect science.

[2]  C. Vorburger,et al.  The role of defensive symbionts in host–parasite coevolution , 2018, Biological reviews of the Cambridge Philosophical Society.

[3]  H. Godfray,et al.  Hosts do not simply outsource pathogen resistance to protective symbionts , 2018, Evolution; international journal of organic evolution.

[4]  J. Russell,et al.  Breakdown of a defensive symbiosis, but not endogenous defences, at elevated temperatures , 2018, Molecular ecology.

[5]  Laura J. Kraft,et al.  Multi‐modal defences in aphids offer redundant protection and increased costs likely impeding a protective mutualism , 2018, The Journal of animal ecology.

[6]  C. Lemaitre,et al.  Multi-scale characterization of symbiont diversity in the pea aphid complex through metagenomic approaches , 2017, Microbiome.

[7]  M. Strand,et al.  Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids , 2017, Proceedings of the Royal Society B: Biological Sciences.

[8]  T. Fukatsu,et al.  Consequences of coinfection with protective symbionts on the host phenotype and symbiont titres in the pea aphid system , 2017, Insect science.

[9]  Y. Outreman,et al.  Diversity in symbiont consortia in the pea aphid complex is associated with large phenotypic variation in the insect host , 2016, Evolutionary Ecology.

[10]  H. Godfray,et al.  Host Plant Determines the Population Size of an Obligate Symbiont (Buchnera aphidicola) in Aphids , 2016, Applied and Environmental Microbiology.

[11]  J. Gershenzon,et al.  Enemy-free space promotes maintenance of host races in an aphid species , 2016, Oecologia.

[12]  Y. Outreman,et al.  Conditional Reduction of Predation Risk Associated with a Facultative Symbiont in an Insect , 2015, PloS one.

[13]  J. Peccoud,et al.  Genetic characterisation of new host‐specialised biotypes and novel associations with bacterial symbionts in the pea aphid complex , 2015 .

[14]  J. Ferrari,et al.  A facultative endosymbiont in aphids can provide diverse ecological benefits , 2015, Journal of evolutionary biology.

[15]  H. Godfray,et al.  Evidence for specificity in symbiont-conferred protection against parasitoids , 2015, Proceedings of the Royal Society B: Biological Sciences.

[16]  T. Engl,et al.  Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. , 2015, Natural product reports.

[17]  S. Asgari,et al.  Venom Proteins from Parasitoid Wasps and Their Biological Functions , 2015, Toxins.

[18]  J. Gauthier,et al.  Bacterial Communities Associated with Host-Adapted Populations of Pea Aphids Revealed by Deep Sequencing of 16S Ribosomal DNA , 2015, PloS one.

[19]  Piotr Łukasik,et al.  Patterns, causes and consequences of defensive microbiome dynamics across multiple scales , 2015, Molecular ecology.

[20]  C. Vorburger,et al.  Cheaper is not always worse: strongly protective isolates of a defensive symbiont are less costly to the aphid host , 2015, Proceedings of the Royal Society B: Biological Sciences.

[21]  G. Zotz,et al.  Host specificity in vascular epiphytes: a review of methodology, empirical evidence and potential mechanisms , 2015, AoB PLANTS.

[22]  K. Hopper,et al.  Factors Limiting the Spread of the Protective Symbiont Hamiltonella defensa in Aphis craccivora Aphids , 2014, Applied and Environmental Microbiology.

[23]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[24]  J. Russell,et al.  Aphid-encoded variability in susceptibility to a parasitoid , 2014, BMC Evolutionary Biology.

[25]  J. Russell,et al.  Defensive symbiosis in the real world – advancing ecological studies of heritable, protective bacteria in aphids and beyond , 2014 .

[26]  Y. Outreman,et al.  An ecological cost associated with protective symbionts of aphids , 2014, Ecology and evolution.

[27]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[28]  P. Berg,et al.  Modern maize varieties going local in the semi-arid zone in Tanzania , 2014, BMC Evolutionary Biology.

[29]  J. Hadfield,et al.  Horizontally Transmitted Symbionts and Host Colonization of Ecological Niches , 2013, Current Biology.

[30]  P. Ganesanandamoorthy,et al.  Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids , 2013, Ecology and evolution.

[31]  S. Via,et al.  POPULATION GENETIC STRUCTURE AND SECONDARY SYMBIONTS IN HOST‐ASSOCIATED POPULATIONS OF THE PEA APHID COMPLEX , 2012, Evolution; international journal of organic evolution.

[32]  Y. Outreman,et al.  Symbiont infection affects aphid defensive behaviours , 2011, Biology Letters.

[33]  T. Fukatsu,et al.  Facultative Symbiont Infections Affect Aphid Reproduction , 2011, PloS one.

[34]  J. Cronin,et al.  Environmental heterogeneity and spatiotemporal variability in plant defense traits , 2011 .

[35]  H. Godfray,et al.  Effects of bacterial secondary symbionts on host plant use in pea aphids , 2011, Proceedings of the Royal Society B: Biological Sciences.

[36]  C. Sandrock,et al.  Variation and covariation of life history traits in aphids are related to infection with the facultative bacterial endosymbiont Hamiltonella defensa , 2010 .

[37]  N. Moran,et al.  Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. , 2010, Annual review of entomology.

[38]  D. Michaud,et al.  Impact of environmental stress on aphid clonal resistance to parasitoids: Role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. , 2009, Journal of insect physiology.

[39]  N. Moran,et al.  Bacteriophages Encode Factors Required for Protection in a Symbiotic Mutualism , 2009, Science.

[40]  V. Calcagno,et al.  Complex trait differentiation between host-populations of the pea aphid Acyrthosiphon pisum (Harris): implications for the evolution of ecological specialisation , 2009 .

[41]  C. Sandrock,et al.  Genotypic Variation and the Role of Defensive Endosymbionts in an All-Parthenogenetic Host-Parasitoid Interaction , 2009, Evolution; international journal of organic evolution.

[42]  J. Peccoud,et al.  A continuum of genetic divergence from sympatric host races to species in the pea aphid complex , 2009, Proceedings of the National Academy of Sciences.

[43]  N. Moran,et al.  Protective Insect Endosymbiont Diverse Phage-encoded Toxins in a Supplemental Material , 2022 .

[44]  Y. Outreman,et al.  Predation risk cues associated with killed conspecifics affect the behavior and reproduction of prey animals , 2008 .

[45]  T. Wilkinson,et al.  Impact of plant nutrients on the relationship between a herbivorous insect and its symbiotic bacteria , 2008, Proceedings of the Royal Society B: Biological Sciences.

[46]  N. Moran,et al.  Population dynamics of defensive symbionts in aphids , 2008, Proceedings of the Royal Society B: Biological Sciences.

[47]  H. Godfray,et al.  Genetic variation in the effect of a facultative symbiont on host-plant use by pea aphids , 2007, Oecologia.

[48]  N. Moran,et al.  Costs and benefits of a superinfection of facultative symbionts in aphids , 2006, Proceedings of the Royal Society B: Biological Sciences.

[49]  F. Jiggins,et al.  Genetic variation in Drosophila melanogaster pathogen susceptibility , 2006, Parasitology.

[50]  N. Moran,et al.  The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  N. Moran,et al.  Variation in resistance to parasitism in aphids is due to symbionts not host genotype. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  H. Godfray,et al.  Linking the bacterial community in pea aphids with host‐plant use and natural enemy resistance , 2004 .

[53]  M. Camara Physiological mechanisms underlying the costs of chemical defence in Junonia coenia Hu¨bner (Nymphalidae): A gravimetric and quantitative genetic analysis , 1997, Evolutionary Ecology.

[54]  B. Sabater-Muñoz,et al.  Host–based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[55]  P. Schmid-Hempel Variation in immune defence as a question of evolutionary ecology , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[56]  N. Moran,et al.  Facultative bacterial symbionts in aphids confer resistance to parasitic wasps , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Tremblay,et al.  Host castration by Aphidius ervi venom proteins. , 2000, Journal of insect physiology.

[58]  H. Godfray,et al.  The evolutionary ecology of resistance to parasitoids by Drosophila , 2000, Heredity.

[59]  Å. Cederblad,et al.  Absorption of zinc from Iupin (Lupinus angustifolius)-based foods , 1994, British Journal of Nutrition.

[60]  M. Mackauer,et al.  Heterospecific larval competition and host discrimination in two species of aphid parasitoids: Aphidius ervi and Aphidius smithi , 1990 .

[61]  A. Dixon,et al.  Developmental Constraints in the Evolution of Reproductive Strategies: Telescoping of Generations in Parthenogenetic Aphids , 1989 .