Elevation models for reproducible evaluation of terrain representation

ABSTRACT This paper proposes elevation models to promote, evaluate, and compare various terrain representation techniques. Our goal is to increase the reproducibility of terrain rendering algorithms and techniques across different scales and landscapes. We introduce elevation models of varying terrain types, available to the user at no cost, with minimal common data imperfections such as missing data values, resampling artifacts, and seams. Three multiscale elevation models are available, each consisting of a set of elevation grids, centered on the same geographic location, with increasing cell sizes and spatial extents. We also propose a collection of single-scale elevation models of archetypal landforms including folded ridges, a braided riverbed, active and stabilized sand dunes, and a volcanic caldera. An inventory of 78 publications with a total of 155 renderings illustrating terrain visualization techniques guided the selection of landform types in the elevation models. The benefits of using the proposed elevation models include straightforward comparison of terrain representation methods across different publications and better documentation of the source data, which increases the reproducibility of terrain representations.

[1]  Bernhard Jenny,et al.  Terrain Sculptor: generalizing terrain models for relief shading , 2010 .

[2]  Kurt Brassel A Model for Automatic Hill-Shading , 1974 .

[3]  Bernhard Jenny,et al.  Scree Representation on Topographic Maps , 2010 .

[4]  Michael F. Goodchild,et al.  Reproducibility and replicability: opportunities and challenges for geospatial research , 2020, Int. J. Geogr. Inf. Sci..

[5]  Michael J. Oimoen,et al.  The National Elevation Dataset , 2002 .

[6]  R. Mark A multidirectional, oblique-weighted, shaded-relief image of the Island of Hawaii , 1992 .

[7]  Bernhard Jenny,et al.  Interactive shearing for terrain visualization: an expert study , 2016, GeoInformatica.

[8]  Arnaud Le Bris,et al.  A New Approach for Mountain Areas Cartography , 2008, SDH.

[9]  Timofey Samsonov,et al.  Automated placement of supplementary contour lines , 2019, Int. J. Geogr. Inf. Sci..

[10]  K. Edwards,et al.  The use of intensity-hue-saturation transformation for producing color shaded-relief images , 1994 .

[11]  Suzanne A. Pierce,et al.  Toward the Geoscience Paper of the Future: Best practices for documenting and sharing research from data to software to provenance , 2016 .

[12]  A. James Stewart,et al.  A Uniform Sky Illumination Model to Enhance Shading of Terrain and Urban Areas , 2006 .

[13]  T. Podobnikar Multidirectional Visibility Index for Analytical Shading Enhancement , 2012 .

[14]  Bernhard Jenny,et al.  Terrain generalization with line integral convolution , 2021 .

[15]  Berthold K. P. Horn,et al.  Hill shading and the reflectance map , 1981, Proceedings of the IEEE.

[16]  Chris Brunsdon,et al.  Opening practice: supporting reproducibility and critical spatial data science , 2020, Journal of Geographical Systems.

[17]  Jerry Shannon,et al.  Opening GIScience: A process-based approach , 2018, Int. J. Geogr. Inf. Sci..

[18]  Yerach Doytsher,et al.  A logarithmic and sub-pixel approach to shaded relief representation ☆ , 2003 .

[19]  Bernhard Jenny,et al.  Plan oblique relief for web maps , 2015 .

[20]  P. Kennelly Terrain maps displaying hill-shading with curvature , 2008 .

[21]  A. Stewart Fotheringham,et al.  Reproducibility and Replicability in Geographical Analysis , 2019, Geographical Analysis.

[22]  Bernhard Jenny An Interactive Approach to Analytical Relief Shading , 2001, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[23]  Alex Tait Photoshop 6 Tutorial: How to Create Basic Colored Shaded Relief , 2002 .

[24]  P. Yoëli,et al.  The Mechanisation of Analytical Hill Shading , 1967 .

[25]  Jeffrey S. Nighbert Using Remote Sensing Imagery to Texturize Layer Tinted Relief , 2000 .

[26]  Tobias Isenberg,et al.  A Systematic Review on the Practice of Evaluating Visualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[27]  Christian Kray,et al.  In-depth examination of spatiotemporal figures in open reproducible research , 2018, Cartography and Geographic Information Science.

[28]  Tom Patterson Getting Real: Reflecting on the New Look of National Park Service Maps , 2002 .

[29]  Enrico Puppo,et al.  A continuous scale-space method for the automated placement of spot heights on maps , 2017, Comput. Geosci..

[30]  Bernhard Jenny,et al.  Automated Reduction of Visual Complexity in Small-Scale Relief Shading , 2010, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[31]  Jeffrey C. Patton,et al.  The Perception of Hypsometric Colours , 1977 .

[32]  Tobias Dahinden,et al.  Digital Cliff Drawing for Topographic Maps: Traditional Representations by Means of New Technologies , 2001, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[33]  Richard J. Phillips,et al.  An experimental investigation of layer tints for relief maps in school atlases , 1982 .

[34]  Carlos Carbonell-Carrera,et al.  Interactive Visualization Software to Improve Relief Interpretation Skills: Spatial Data Infrastructure Geoportal versus Augmented Reality , 2019, The Professional Geographer.

[35]  F. Fusi,et al.  From in silico to in vitro: a trip to reveal flavonoid binding on the Rattus norvegicus Kir6.1 ATP-sensitive inward rectifier potassium channel , 2018, PeerJ.

[36]  R. Peng Reproducible Research in Computational Science , 2011, Science.

[37]  Jie Yang,et al.  Using Hachures to Construct a 3D Doline Model Automatically , 2015, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[38]  Shin Murakoshi,et al.  Cognitive characteristics of navigational map use by mountaineers , 2015 .

[39]  A. Jon Kimerling,et al.  Hillshading of Terrain Using Layer Tints with Aspect-Variant Luminosity , 2004 .

[40]  Kusay Jaara,et al.  Extraction of Cartographic Contour Lines Using Digital Terrain Model (DTM) , 2011 .

[41]  Tom Patterson,et al.  A Desktop Approach to Shaded Relief Production , 1997 .

[42]  Bernhard Jenny,et al.  The development and rationale of cross-blended hypsometric tints , 2011 .

[43]  Lorenz Hurni,et al.  A GIS tool to increase the visual quality of relief shading by automatically changing the light direction , 2015, Comput. Geosci..

[44]  Keith C. Clarke,et al.  Perceptually Shaded Slope Maps for the Visualization of Digital Surface Models , 2014, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[45]  Tobias Isenberg,et al.  Lightweight Relief Shearing for Enhanced Terrain Perception on Interactive Maps , 2015, CHI.

[46]  L. Hurni,et al.  Automatic rock depiction via relief shading , 2015 .

[47]  Bernhard Jenny,et al.  Improving the representation of major landforms in analytical relief shading , 2015, Int. J. Geogr. Inf. Sci..

[48]  Ann-Sophie Lehmann Taking the Lid off the Utah Teapot: Towards a Material Analysis of Computer Graphics , 2012 .

[49]  A. James Stewart,et al.  General sky models for illuminating terrains , 2014, Int. J. Geogr. Inf. Sci..

[50]  Jakub Lysák AN ALGORITHM FOR AUTOMATED DIGITAL ROCK DRAWING IN THE STYLE USED IN CZECH TOPOGRAPHIC MAPS , 2016 .

[51]  Daniel Nüst,et al.  Reproducible research and GIScience: an evaluation using AGILE conference papers , 2018, PeerJ.

[52]  Kitiro Tanaka The Relief Contour Method of Representing Topography on Maps , 1950 .

[53]  Jon A. Kimerling,et al.  A New Digital Slope-Aspect Display Process , 1990 .

[54]  Brooke E. Marston,et al.  Standard elevation models for evaluating terrain representation , 2019, Abstracts of the ICA.

[55]  Jesús Palomar-Vázquez,et al.  Automated spot heights generalisation in trail maps , 2008, Int. J. Geogr. Inf. Sci..

[56]  Paulo Raposo,et al.  Variable DEM generalization using local entropy for terrain representation through scale , 2019, International Journal of Cartography.

[57]  Tomaz Podobnikar,et al.  Detecting Mountain Peaks and Delineating Their Shapes Using Digital Elevation Models, Remote Sensing and Geographic Information Systems Using Autometric Methodological Procedures , 2012, Remote. Sens..

[58]  M. Shirasawa,et al.  Visualizing topography by openness: A new application of image processing to digital elevation models , 2002 .

[59]  L. Hurni,et al.  Automated Swiss-Style Relief Shading and Rock Hachuring , 2018, The Cartographic Journal.

[60]  Timofey Samsonov,et al.  Multiscale Hypsometric Mapping , 2011 .

[61]  J. Oksanen,et al.  A design of contour generation for topographic maps with adaptive DEM smoothing , 2017 .

[62]  G. Touya,et al.  Contour Lines Generation in Karstic Plateaus for Topographic Maps , 2019, Proceedings of the ICA.

[63]  L. Hurni,et al.  Changing the Light Azimuth in Shaded Relief Representation by Clustering Aspect , 2014 .

[64]  AUTOMATED SMALL-SCALE RELIEF SHADING: A NEW METHOD AND SOFTWARE APPLICATION , 2010 .

[65]  Matt Duckham,et al.  Improving the reproducibility of geospatial scientific workflows: the use of geosocial media in facilitating disaster response , 2019, Journal of Spatial Science.

[66]  Arzu Çöltekin,et al.  An empirical assessment of the impact of the light direction on the relief inversion effect in shaded relief maps: NNW is better than NW , 2017 .

[67]  Dilpreet Singh,et al.  Cartographic Relief Shading with Neural Networks , 2020, IEEE Transactions on Visualization and Computer Graphics.

[68]  Tom Patterson,et al.  The Design of Gray Earth: A Monochrome Terrain Dataset of the World , 2013 .

[69]  William Mackaness,et al.  An Algorithm for Localised Contour Removal over Steep Terrain , 2006 .

[70]  Bernhard Jenny,et al.  Introducing Plan Oblique Relief , 2007 .

[71]  Yuemin Ding,et al.  A Loosely Synchronous, Parallel Algorithm for Hill Shading Digital Elevation Models , 1994 .

[72]  Bernhard Jenny,et al.  Aerial perspective for shaded relief , 2021 .

[73]  E. Imhof Cartographic Relief Presentation , 1982 .