The Inverse Scattering Transform for the Defocusing Nonlinear Schrödinger Equations with Nonzero Boundary Conditions

A rigorous theory of the inverse scattering transform for the defocusing nonlinear Schrodinger equation with nonvanishing boundary values as is presented. The direct problem is shown to be well posed for potentials q such that , for which analyticity properties of eigenfunctions and scattering data are established. The inverse scattering problem is formulated and solved both via Marchenko integral equations, and as a Riemann-Hilbert problem in terms of a suitable uniform variable. The asymptotic behavior of the scattering data is determined and shown to ensure the linear system solving the inverse problem is well defined. Finally, the triplet method is developed as a tool to obtain explicit multisoliton solutions by solving the Marchenko integral equation via separation of variables.

[1]  C. Mee,et al.  Exact Solutions to the Sine-Gordon Equation , 2010, 1003.2453.

[2]  Y. Kato,et al.  Non‐self‐adjoint Zakharov–Shabat operator with a potential of the finite asymptotic values. II. Inverse problem , 1984 .

[3]  Wave Operators for Defocusing Matrix Zakharov-Shabat Systems with Potentials Nonvanishing at Infinity , 2010 .

[4]  H. Inoue,et al.  Eigen Value Problem with Nonvanishing Potentials , 1977 .

[5]  Jonathan R. Partington,et al.  Linear algebra in action (Graduate Studies in Mathematics 78) , 2008 .

[6]  Charles H. Townes,et al.  Self-trapping of optical beams , 1964 .

[7]  M. Ablowitz,et al.  nverse scattering transform for the vector nonlinear chrödinger equation with nonvanishing boundary onditions , 2006 .

[8]  M. Boiti,et al.  The spectral transform for the NLS equation with left-right asymmetric boundary conditions , 1982 .

[9]  C. Mee,et al.  Explicit solutions of the cubic matrix nonlinear Schrödinger equation , 2008 .

[10]  Leon A. Takhtajan,et al.  Hamiltonian methods in the theory of solitons , 1987 .

[11]  G Ruocco,et al.  Free-energy transition in a gas of noninteracting nonlinear wave particles. , 2008, Physical review letters.

[12]  Patton,et al.  Backward-volume-wave microwave-envelope solitons in yttrium iron garnet films. , 1994, Physical review. B, Condensed matter.

[13]  Hiroshi Inoue,et al.  Inverse Scattering Method for the Nonlinear Evolution Equations under Nonvanishing Conditions , 1978 .

[14]  V. Zakharov Hamiltonian Formalism for Hydrodynamic Plasma Models , 1971 .

[15]  Helly Aufgaben und Lehrsätze aus der Analysis , 1928 .

[16]  A. B. Shabat,et al.  Interaction between solitons in a stable medium , 1973 .

[17]  J. K. Shaw,et al.  On the Eigenvalues of Zakharov-Shabat Systems , 2003, SIAM J. Math. Anal..

[18]  Non‐self‐adjoint Zakharov–Shabat operator with a potential of the finite asymptotic values. I. Direct spectral and scattering problems , 1981 .

[19]  F. Muller-Hoissen,et al.  Solutions of matrix NLS systems and their discretizations: a unified treatment , 2009, 1001.0133.

[20]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[21]  Cauchy-type determinants and integrable systems , 2010 .

[22]  Gino Biondini,et al.  Inverse Scattering Transform for the Multi‐Component Nonlinear Schrödinger Equation with Nonzero Boundary Conditions , 2011 .

[23]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[24]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[25]  Tuncay Aktosun,et al.  Exact solutions to the focusing nonlinear Schrödinger equation , 2007 .

[26]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[27]  V. I. Talanov,et al.  Self Focusing of Wave Beams in Nonlinear Media , 1965 .

[28]  C. Mee,et al.  Wave operators for the matrix Zakharov-Shabat system , 2010 .

[29]  R. Dodd,et al.  Review: L. D. Faddeev and L. A. Takhtajan, Hamiltonian methods in the theory of solitons , 1988 .

[30]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[31]  The Dirac inverse spectral transform: Kinks and boomerons , 1980 .

[32]  Harry Dym,et al.  Linear Algebra in Action , 2006, Graduate Studies in Mathematics.

[33]  Explicit Solutions to the Korteweg-De Vries Equation on the Half Line , 2006, math-ph/0606008.

[34]  A. Zvezdin,et al.  Contribution to the nonlinear theory of magnetostatic spin waves , 2008 .

[35]  L. Faddeev,et al.  Comparison of the exact quantum and quasiclassical results for a nonlinear Schrödinger equation , 1976 .

[36]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[37]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Appendix. Fundamental constants and conversion factors , 2008 .

[38]  P. Kulish,et al.  Multicomponent nonlinear Schrödinger equation in the case of nonzero boundary conditions , 1985 .

[39]  V. I. Talanov,et al.  Focusing of Light in Cubic Media , 1970 .

[40]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[41]  L. Landau,et al.  On the theory of superconductivity , 1955 .