Are fuzzy definitions of basic attributes of image objects really useful?

Computer vision applications often involve measuring properties of objects in images. Typically, thresholding or segmentation techniques are used to obtain crisp object boundaries before object properties are computed. In this correspondence, we explore the possibility of using fuzzy definitions for measuring object properties without having to make crisp decisions about object boundaries prematurely. We present theorems which indicate that the use of fuzzy definitions to measure properties in intensity-based image analysis almost always gives accurate results. We also present experimental evidence and reasoning which show that fuzzy definitions are not always useful in feature-based methods.

[1]  Azriel Rosenfeld,et al.  The fuzzy geometry of image subsets , 1984, Pattern Recognit. Lett..

[2]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[3]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[4]  J. Dombi Membership function as an evaluation , 1990 .

[5]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[6]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[7]  Raghu Krishnapuram,et al.  Recovery of geometric properties of binary objects from blurred images , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[8]  Azriel Rosenfeld,et al.  Image enhancement and thresholding by optimization of fuzzy compactness , 1988, Pattern Recognit. Lett..

[9]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[10]  Azriel Rosenfeld,et al.  Fuzzy Digital Topology , 1979, Inf. Control..

[11]  Sankar K. Pal,et al.  Index of area coverage of fuzzy image subsets and object extraction , 1990, Pattern Recognit. Lett..

[12]  James M. Keller,et al.  The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..

[13]  James M. Keller,et al.  Fuzzy Set Methods in Computer Vision , 1992 .

[14]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[15]  Azriel Rosenfeld,et al.  The perimeter of a fuzzy set , 1985, Pattern Recognit..

[16]  Sankar K. Pal Fuzziness, Image Information and Scene Analysis , 1992 .

[17]  James M. Keller,et al.  Quantitative analysis of properties and spatial relations of fuzzy image regions , 1993, IEEE Trans. Fuzzy Syst..

[18]  A. Rosenfeld,et al.  Fuzzy geometry: An overview , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[19]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[20]  Marie-Christine Jaulent,et al.  A general approach to parameter evaluation in fuzzy digital pictures , 1987, Pattern Recognit. Lett..