Phylogenetic distribution of plant snoRNA families

[1]  P. Stadler,et al.  An updated human snoRNAome , 2016, Nucleic acids research.

[2]  W. Karłowski,et al.  Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana , 2015, BMC Genomics.

[3]  P. Stadler,et al.  Developmentally regulated expression and expression strategies of Drosophila snoRNAs. , 2015, Insect biochemistry and molecular biology.

[4]  E. Wolf,et al.  snoRNAs are a novel class of biologically relevant Myc targets , 2015, BMC Biology.

[5]  Michelle S Scott,et al.  The emerging landscape of small nucleolar RNAs in cell biology , 2015, Wiley interdisciplinary reviews. RNA.

[6]  Peter F. Stadler,et al.  The Expansion of Animal MicroRNA Families Revisited , 2015, Life.

[7]  Ivo Grosse,et al.  plantDARIO: web based quantitative and qualitative analysis of small RNA-seq data in plants , 2014, Front. Plant Sci..

[8]  P. Stadler,et al.  The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies. , 2014, Molecular cell.

[9]  Michelle S. Scott,et al.  Identification of discrete classes of small nucleolar RNA featuring different ends and RNA binding protein dependency , 2014, Nucleic acids research.

[10]  Peter F Stadler,et al.  Matching of Soulmates: coevolution of snoRNAs and their targets. , 2014, Molecular biology and evolution.

[11]  Peter F. Stadler,et al.  snoStrip: a snoRNA annotation pipeline , 2014, Bioinform..

[12]  N. Kenmochi,et al.  snOPY: a small nucleolar RNA orthological gene database , 2013, BMC Research Notes.

[13]  J. Brosius,et al.  Alternative Processing as Evolutionary Mechanism for the Origin of Novel Nonprotein Coding RNAs , 2013, Genome biology and evolution.

[14]  Runsheng Chen,et al.  A global identification and analysis of small nucleolar RNAs and possible intermediate-sized non-coding RNAs in Oryza sativa. , 2013, Molecular plant.

[15]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[16]  Tae-Ho Lee,et al.  PGDD: a database of gene and genome duplication in plants , 2012, Nucleic Acids Res..

[17]  A. Poole,et al.  Comparative genomics of eukaryotic small nucleolar RNAs reveals deep evolutionary ancestry amidst ongoing intragenomic mobility , 2012, BMC Evolutionary Biology.

[18]  P. Stadler,et al.  LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. , 2012, RNA.

[19]  K. Reinert Complete suboptimal folding of RNA and the stability of secondary structures , Biopolymers , 2012 .

[20]  Michelle S. Scott,et al.  From snoRNA to miRNA: Dual function regulatory non-coding RNAs , 2011, Biochimie.

[21]  V. Cognat,et al.  A global picture of tRNA genes in plant genomes. , 2011, The Plant journal : for cell and molecular biology.

[22]  Francisco M De La Vega,et al.  Supporting Online Material for Evolution of Yeast Noncoding Rnas Reveals an Alternative Mechanism for Widespread Intron Loss Materials and Methods Som Text Figs. S1 to S4 References , 2022 .

[23]  M. Echeverria,et al.  Nucleolar RNPs: from genes to functional snoRNAs in plants. , 2010, Biochemical Society transactions.

[24]  Alex Bateman,et al.  SnoPatrol: how many snoRNA genes are there? , 2010, Journal of biology.

[25]  Peter J. Shaw,et al.  Plant U13 orthologues and orphan snoRNAs identified by RNomics of RNA from Arabidopsis nucleoli , 2010, Nucleic acids research.

[26]  Hui Zhou,et al.  SnoRNAs from the filamentous fungus Neurospora crassa: structural, functional and evolutionary insights , 2009, BMC Genomics.

[27]  P. Stadler,et al.  Comparative analysis of eukaryotic U3 snoRNA , 2009, RNA biology.

[28]  B. Montanini,et al.  Eukaryotic snoRNAs: a paradigm for gene expression flexibility. , 2009, Genomics.

[29]  Sean R. Eddy,et al.  Infernal 1.0: inference of RNA alignments , 2009, Bioinform..

[30]  Liang-Hu Qu,et al.  Genome-wide analysis of chicken snoRNAs provides unique implications for the evolution of vertebrate snoRNAs , 2009, BMC Genomics.

[31]  Jürgen Brosius,et al.  Retroposed SNOfall--a mammalian-wide comparison of platypus snoRNAs. , 2008, Genome research.

[32]  Hui Zhou,et al.  Genomewide Analysis of Box C/D and Box H/ACA snoRNAs in Chlamydomonas reinhardtii Reveals an Extensive Organization Into Intronic Gene Clusters , 2008, Genetics.

[33]  W. Neuhofer,et al.  Osmoadaptation of Mammalian cells - an orchestrated network of protective genes. , 2007, Current genomics.

[34]  R. Terns,et al.  Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs , 2007, Nature Reviews Molecular Cell Biology.

[35]  Laurent Lestrade,et al.  snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs , 2005, Nucleic Acids Res..

[36]  Christoph Flamm,et al.  The expansion of the metazoan microRNA repertoire , 2006, BMC Genomics.

[37]  Jaume Bertranpetit,et al.  Comparative analysis of cancer genes in the human and chimpanzee genomes , 2006, BMC Genomics.

[38]  Gwenael Badis,et al.  The complete set of H/ACA snoRNAs that guide rRNA pseudouridylations in Saccharomyces cerevisiae. , 2005, RNA.

[39]  Lela Lackey,et al.  Conserved spacing between the box C/D and C'/D' RNPs of the archaeal box C/D sRNP complex is required for efficient 2'-O-methylation of target RNAs. , 2005, RNA.

[40]  John W. S. Brown,et al.  Splicing-independent processing of plant box C/D and box H/ACA small nucleolar RNAs , 1999, Plant Molecular Biology.

[41]  Liang-Hu Qu,et al.  The high diversity of snoRNAs in plants: identification and comparative study of 120 snoRNA genes from Oryza sativa. , 2003, Nucleic acids research.

[42]  Manuel Echeverria,et al.  Plant snoRNAs: functional evolution and new modes of gene expression. , 2003, Trends in plant science.

[43]  Paul D. Shaw,et al.  Plant snoRNA database , 2003, Nucleic Acids Res..

[44]  A. Hüttenhofer,et al.  The expanding snoRNA world. , 2002, Biochimie.

[45]  Tamás Kiss,et al.  Cajal body‐specific small nuclear RNAs: a novel class of 2′‐O‐methylation and pseudouridylation guide RNAs , 2002, The EMBO journal.

[46]  W. Filipowicz,et al.  Biogenesis of small nucleolar ribonucleoproteins. , 2002, Current opinion in cell biology.

[47]  Elizabeth J. Tran,et al.  Archaeal ribosomal protein L7 is a functional homolog of the eukaryotic 15.5kD/Snu13p snoRNP core protein. , 2002, Nucleic acids research.

[48]  T. Lowe,et al.  Multiple snoRNA gene clusters from Arabidopsis. , 2001, RNA.

[49]  C Gaspin,et al.  Identification of 66 box C/D snoRNAs in Arabidopsis thaliana: extensive gene duplications generated multiple isoforms predicting new ribosomal RNA 2'-O-methylation sites. , 2001, Journal of molecular biology.

[50]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[51]  David Tollervey,et al.  The function and synthesis of ribosomes , 2001, Nature Reviews Molecular Cell Biology.

[52]  Meng Qing,et al.  Identification of 10 novel snoRNA gene clusters from Arabidopsis thaliana , 2001 .

[53]  L. Qu,et al.  Identification of 10 novel snoRNA gene clusters from Arabidopsis thaliana. , 2001, Nucleic acids research.

[54]  H. Vos,et al.  Yeast Rrp9p is an evolutionarily conserved U3 snoRNP protein essential for early pre-rRNA processing cleavages and requires box C for its association. , 2000, RNA.

[55]  Christiane Branlant,et al.  A Common Core RNP Structure Shared between the Small Nucleoar Box C/D RNPs and the Spliceosomal U4 snRNP , 2000, Cell.

[56]  F. Barneche,et al.  Fibrillarin genes encode both a conserved nucleolar protein and a novel small nucleolar RNA involved in ribosomal RNA methylation in Arabidopsis thaliana. , 2000, The Journal of biological chemistry.

[57]  J. Bachellerie,et al.  Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. , 2000, Journal of molecular biology.

[58]  P. Mitchell,et al.  Functions of the exosome in rRNA, snoRNA and snRNA synthesis , 1999, The EMBO journal.

[59]  P. Schuster,et al.  Complete suboptimal folding of RNA and the stability of secondary structures. , 1999, Biopolymers.

[60]  D. Tollervey,et al.  Ribosome synthesis in Saccharomyces cerevisiae. , 1999, Annual review of genetics.

[61]  Laurie Smith,et al.  The RNA World of the Nucleolus: Two Major Families of Small RNAs Defined by Different Box Elements with Related Functions , 1996, Cell.

[62]  A. Fatica,et al.  Processing of the intron‐encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. , 1996, The EMBO journal.

[63]  W. Filipowicz,et al.  Exonucleolytic processing of small nucleolar RNAs from pre-mRNA introns. , 1995, Genes & development.