Semiparametric Gaussian Copula Models: Geometry and Efficient Rank-Based Estimation

We propose, for multivariate Gaussian copula models with unknown margins and structured correlation matrices, a rank-based,semiparametrically efficient estimator for the Euclidean copula parameter. This estimator is defined as a one-step update of a rank-based pilot estimator in the direction of the efficient influence function, which is calculated explicitly. Moreover, finite-dimensional algebraic conditions are given that completely characterize efficiency of the pseudo-likelihood estimator and adaptivity of the model with respect to the unknown marginal distributions. For correlation matrices structured according to a factor model, the pseudo-likelihood estimator turns out to be semiparametrically efficient. On the other hand, for Toeplitz correlation matrices, the asymptotic relative efficiency of the pseudo-likelihood estimator can be as low as 20%. These findings are confirmed by Monte Carlo simulations. We indicate how our results can be extended to joint regression models.

[1]  Peter D. Hoff,et al.  Information bounds for Gaussian copulas. , 2011, Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability.

[2]  Guang Cheng,et al.  Efficient estimation of semiparametric copula models for bivariate survival data , 2014, J. Multivar. Anal..

[3]  Ingrid Hobæk Haff,et al.  Parameter estimation for pair-copula constructions , 2013, 1303.4890.

[4]  C. Klaassen,et al.  Efficient estimation in the semiparametric normal regression-copula model with a focus on QTL mapping , 2013 .

[5]  H. Zou,et al.  Regularized rank-based estimation of high-dimensional nonparanormal graphical models , 2012, 1302.3082.

[6]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[7]  Larry A. Wasserman,et al.  High Dimensional Semiparametric Gaussian Copula Graphical Models. , 2012, ICML 2012.

[8]  C. Varin,et al.  Gaussian Copula Marginal Regression , 2012 .

[9]  Peter Bajorski,et al.  Wiley Series in Probability and Statistics , 2010 .

[10]  Peter J. Bickel,et al.  Measuring reproducibility of high-throughput experiments , 2011, 1110.4705.

[11]  A. Necir,et al.  A semiparametric estimation of copula models based on the method of moments , 2011, 1105.6077.

[12]  Claudia Klüppelberg,et al.  Copula structure analysis , 2009 .

[13]  Mingyao Li,et al.  Joint Regression Analysis of Correlated Data Using Gaussian Copulas , 2009, Biometrics.

[14]  Xiaohong Chen,et al.  Efficient Estimation of Copula-Based Semiparametric Markov Models , 2009, 0901.0751.

[15]  Eckhard Liebscher Semiparametric Estimation of the Parameters of Multivariate Copulas , 2009, Kybernetika.

[16]  Peter D. Hoff,et al.  Extending the rank likelihood for semiparametric copula estimation , 2006, math/0610413.

[17]  Xiaohong Chen,et al.  Efficient Estimation of Semiparametric Multivariate Copula Models Efficient Estimation of Semiparametric Multivariate Copula Models * , 2004 .

[18]  M. Hallin,et al.  Serial and nonserial sign-and-rank statistics. Asymptotic representation and asymptotic normality , 2006, math/0605506.

[19]  H. Tsukahara,et al.  Semiparametric estimation in copula models , 2005 .

[20]  J. MacKinnon,et al.  Econometric Theory and Methods , 2003 .

[21]  T. N. Sriram Asymptotics in Statistics–Some Basic Concepts , 2002 .

[22]  P. X. Song,et al.  Multivariate Dispersion Models Generated From Gaussian Copula , 2000 .

[23]  Christian Genest,et al.  Conditions for the Asymptotic Semiparametric Efficiency of an Omnibus Estimator of Dependence Parame , 2000 .

[24]  C. Klaassen,et al.  Efficient estimation in the bivariate normal copula model: normal margins are least favourable , 1997 .

[25]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[26]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[27]  D. Oakes Multivariate survival distributions , 1994 .

[28]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[29]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[30]  Grace L. Yang,et al.  Asymptotics In Statistics , 1990 .

[31]  A. V. D. Vaart,et al.  Statistical estimation in large parameter spaces , 1988 .

[32]  Chris A. J. Klaassen,et al.  Consistent Estimation of the Influence Function of Locally Asymptotically Linear Estimators , 1987 .

[33]  D. Oakes,et al.  Semiparametric inference in a model for association in bivanate survival data , 1986 .

[34]  R. Hogg,et al.  On adaptive estimation , 1984 .

[35]  D. Oakes A Model for Association in Bivariate Survival Data , 1982 .

[36]  M. Degroot,et al.  Probability and Statistics , 1977 .

[37]  L. Cam,et al.  Théorie asymptotique de la décision statistique , 1969 .

[38]  Michel Loève,et al.  Probability Theory I , 1977 .

[39]  R. D. Gordon Values of Mills' Ratio of Area to Bounding Ordinate and of the Normal Probability Integral for Large Values of the Argument , 1941 .