A CONTINUOUS ANALOGUE OF SPERNER'S THEOREM
暂无分享,去创建一个
[1] Daniel A. Klain,et al. Introduction to Geometric Probability , 1997 .
[2] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[3] E. Artin,et al. The Gamma Function , 1964 .
[4] Joseph P. S. Kung,et al. Gian-Carlo Rota on combinatorics : introductory papers and commentaries , 1995 .
[5] Daniel A. Klain. A short proof of Hadwiger's characterization theorem , 1995 .
[6] Warren M. Hirsch,et al. SPERNER FAMILIES, s‐SYSTEMS, AND A THEOREM OF MESHALKIN † , 1970 .
[7] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[8] L. D. Meshalkin. Generalization of Sperner’s Theorem on the Number of Subsets of a Finite Set , 1963 .
[9] L. D. Mesalkin. A Generalization of Sperner’s Theorem on the Number of Subsets of a Finite Set , 1963 .
[10] Gian-Carlo Rota,et al. Gian-Carlo Rota on combinatorics , 1995 .
[11] Totally invariant set functions of polynomial type , 1994 .
[12] D. Kleitman. On a combinatorial conjecture of Erdös , 1966 .
[13] L. Santaló. Integral geometry and geometric probability , 1976 .
[14] Peter McMullen,et al. Valuations on convex bodies , 1983 .
[15] P Mcmullen,et al. Non-linear angle-sum relations for polyhedral cones and polytopes , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.
[16] L. Nachbin,et al. The Haar integral , 1965 .
[17] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .
[18] H. Hadwiger. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .
[19] P. Erdös. On a lemma of Littlewood and Offord , 1945 .
[20] Steve Fisk. Whitney Numbers of Projective Space over R, C, H and the P-Adics , 1995, J. Comb. Theory, Ser. A.