The paper deals with modification of the recurrent processing algorithm for discrete sequence of interferometric signal samples. The algorithm is based on subsequent reference signal prediction at specifying a set ("cloud") of values for signal parameters vector by Monte Carlo method, comparison with the measured signal value and usage of the residual for enhancing the values of signal parameters at each discretization step. The concept of multi-cloud prediction model is used in the proposed modified algorithm. A set of normally distributed clouds is created with expectation values selected on the base of criterion of minimum residual between prediction and observation values. Experimental testing of the proposed method applied to estimation of fringe initial phase in the phase shifting interferometry has been conducted. The estimate variance of the signal reconstructed according to estimated initial phase from initial signal does not exceed 2% of the maximum signal value. It has been shown that the proposed algorithm application makes it possible to avoid the 2π-ambiguity and ensure sustainable recovery of interference fringes phase of a complicated type without involving a priori information about interference fringe phase distribution. The usage of the proposed algorithm applied to estimation of interferometric signals parameters gives the possibility for improving the filter stability with respect to influence of random noise and decreasing requirements for accuracy of a priori filtration parameters setting as compared with conventional (single-cloud) implementation of the sequential Monte Carlo method. Keywords: interferometric signals analysis, Bayesian filter, sequential Monte Carlo method, multi-cloud prediction. Acknowledgements. The work was done under government financial support for the leading universities of the Russian Fed- eration (grant 074-U01) and within the Russian Federation President grant for the government support of young Russian PhD scientists № МК-1455.2014.8. Введение Интерферометрические методы измерений благодаря их высокой точности востребованы во мно- гих областях науки и техники (см., например, (1, 2)). В реальных интерферометрических системах реги- стрируемые сигналы искажены случайными помехами различной природы. Повышение вычислительной мощности при использовании современных компьютерных технологий позволило реализовать ряд быст- родействующих алгоритмов обработки интерферометрических сигналов и картин полос, устойчивых к случайным внешним воздействиям (см., например, (3, 4)), однако дальнейшее повышение устойчивости алгоритмов и минимизация погрешностей обработки данных в интерферометрических системах является актуальной задачей. Алгоритмы, основанные на преобразовании Фурье, требуют наличия полной реализации сигнала, что ограничивает их быстродействие. Альтернативный подход состоит в использовании рекуррентных алгоритмов, что позволяет обрабатывать данные по мере их поступления. С учетом возможных случай-
[1]
Weirui Zhao,et al.
A real-time adaptive phase-shifting interferometry
,
2012,
Other Conferences.
[2]
S. Aachen.
Stochastic Differential Equations An Introduction With Applications
,
2016
.
[3]
Igor P. Gurov,et al.
Interference fringe analysis based on recurrence computational algorithms
,
2012
.
[4]
Liang-Chia Chen,et al.
3-D surface profilometry using simultaneous phase-shifting interferometry
,
2010
.
[5]
Neil J. Gordon,et al.
Editors: Sequential Monte Carlo Methods in Practice
,
2001
.
[6]
Timothy J. Robinson,et al.
Sequential Monte Carlo Methods in Practice
,
2003
.
[7]
Dan Simon,et al.
Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches
,
2006
.
[8]
Rudolph van der Merwe,et al.
The Unscented Kalman Filter
,
2002
.
[9]
Andreas Quirrenbach,et al.
Optical Interferometry
,
2001
.
[10]
Igor Gurov,et al.
Analysis of low-coherence interference fringes by the Kalman filtering method.
,
2004,
Journal of the Optical Society of America. A, Optics, image science, and vision.
[11]
B. Øksendal.
Stochastic differential equations : an introduction with applications
,
1987
.
[12]
Jonathan M. Huntley,et al.
Automated fringe pattern analysis in experimental mechanics: A review
,
1998
.